login
A157729
a(n) = Fibonacci(n) + 5.
12
5, 6, 6, 7, 8, 10, 13, 18, 26, 39, 60, 94, 149, 238, 382, 615, 992, 1602, 2589, 4186, 6770, 10951, 17716, 28662, 46373, 75030, 121398, 196423, 317816, 514234, 832045, 1346274, 2178314, 3524583, 5702892, 9227470, 14930357, 24157822, 39088174, 63245991, 102334160
OFFSET
0,1
LINKS
Ivana Jovović and Branko Malešević, Some enumerations of non-trivial composition of the differential operations and the directional derivative, Notes on Number Theory and Discrete Mathematics, Vol. 23, 2017, No. 1, 28-38.
FORMULA
G.f.: ( 5-4*x-6*x^2 ) / ( (x-1)*(x^2+x-1) ). - R. J. Mathar, Aug 09 2012
a(0)=5, a(1)=6, a(2)=6, a(n)=2*a(n-1)+0*a(n-2)-a(n-3). - Harvey P. Dale, Aug 17 2012
a(0) = 5, a(1) = 6, a(n) = a(n - 2) + a(n - 1) - 5. - Reinhard Zumkeller, Jul 30 2013
MATHEMATICA
Fibonacci[Range[0, 40]]+5 (* or *) LinearRecurrence[{2, 0, -1}, {5, 6, 6}, 50] (* Harvey P. Dale, Aug 17 2012 *)
PROG
(Magma) [ Fibonacci(n) + 5: n in [0..40] ]; // Vincenzo Librandi, Apr 24 2011
(PARI) a(n)=fibonacci(n)+5 \\ Charles R Greathouse IV, Jul 02 2013
(Haskell)
a157729 = (+ 5) . a000045
a157729_list = 5 : 6 : map (subtract 5)
(zipWith (+) a157729_list $ tail a157729_list)
-- Reinhard Zumkeller, Jul 30 2013
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 26 2010
STATUS
approved