The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006325 4-dimensional analog of centered polygonal numbers. 36
 0, 0, 1, 7, 26, 70, 155, 301, 532, 876, 1365, 2035, 2926, 4082, 5551, 7385, 9640, 12376, 15657, 19551, 24130, 29470, 35651, 42757, 50876, 60100, 70525, 82251, 95382, 110026, 126295, 144305, 164176, 186032, 210001, 236215, 264810, 295926 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-4) is equal to the number of 6-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007 For n>0, a(n+1) is the n-th antidiagonal sum of A213751. - Clark Kimberling, Jun 20 2012 This sequence is the case m=n-1, k=n+3 of b(m,k) = m*(m+1)*((k-2)*m-(k-5))/6, which is the m-th k-gonal pyramidal number. - Luciano Ancora, Apr 11 2015 Starting (1, 7, 26, ...), this is the binomial transform of (1, 6, 13, 12, 4, 0, 0, 0, ...). - Gary W. Adamson, Jul 31 2015 Also starting (1, 7, 26, ...), this appears to be the number of magic labelings of the cycle-of-loops graph LOOP X C_4 having magic sum n, where LOOP is the 1-vertex, 1-loop-edge graph. - David J. Seal, Sep 13 2017 The conjecture by David J. Seal is true and easily proved using MacMahon's Omega operators via the "Omega" package for Mathematica authored by Axel Riese (obtaining (up to an offset) the generating function listed in the formula section below). See the second Mathematica program in which the edges of LOOP X C_4 are indexed as in the example below. The Omega package can be downloaded from the link provided in the article by G. E. Andrews et al. - L. Edson Jeffery, Oct 15 2017 REFERENCES T. A. Gulliver, Sequences from Arrays of Integers, Int. Math. Journal, Vol. 1, No. 4, pp. 323-332, 2002. LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 G. E. Andrews, P. Paule and A. Riese, MacMahon's partition analysis III. The Omega package. Milan Janjic, Two Enumerative Functions Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019. M. Janjic and B. Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013. M. Janjic and B. Petkovic, A Counting Function Generalizing Binomial Coefficients and Some Other Classes of Integers, J. Int. Seq. 17 (2014) # 14.3.5. J. K. Merikoski, R. Kumar and R. A. Rajput, Upper bounds for the largest eigenvalue of a bipartite graph, Electronic Journal of Linear Algebra ISSN 1081-3810, A publication of the International Linear Algebra Society, Volume 26, pp. 168-176, April 2013. Richard P. Stanley, Examples of Magic Labelings, Unpublished Notes, 1973 [Cached copy, with permission] Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1). FORMULA a(n) = n*(n-1)*(n^2-n+1)/6. a(n) = ((n^5 - (n-1)^5) - (n^1 - (n-1)^1))/30 = (n^5 - (n-1)^5 - 1)/30. - Xavier Acloque, Jan 25 2003 The partial sums of the octahedral numbers: a(n+1) = Sum_{i=0..n} A005900(i). - Jonathan Vos Post, Mar 14 2006 G.f.: -x^2*(x+1)^2/(x-1)^5. - Maksym Voznyy (voznyy(AT)mail.ru), Aug 10 2009 a(n) = Sum_{i=1..n-1} Sum_{j=1..n-1} min(i,j)^2. - Enrique Pérez Herrero, Jan 15 2013 [Which is just rephrasing the partial sum formula with the Murthy formula in A005900. - R. J. Mathar, Jun 14 2014] a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), n > 4. - Yosu Yurramendi, Sep 03 2013 From Daniel Poveda Parrilla, Sep 09 2017: (Start) a(n) = A169938(n-1)/6. a(n+1) = A288486(n)/24. (End) Sum_{n>=2} 1/a(n) = 12 - 2 * sqrt(3) * tanh(sqrt(3)*Pi/2). - Amiram Eldar, Jun 28 2020 EXAMPLE A representation of the LOOP X C_4 graph, with edges and loops indexed as shown, as used in the second Mathematica program below: .             3         1 .              O_______O .              |   2   | .              |4     0| .              |_______| .              O   6   O .             5         7 MATHEMATICA Table[n*(n-1)*(n^2-n+1)/6, {n, 0, 60}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *) << Omega.m; n = 4; cond = {}; Do[AppendTo[cond, Sum[a[Mod[2*k - j, 2*n]], {j, 0, 2}] == a[2*n]], {k, 0, n - 1}]; f = OEqSum[Product[x[i]^a[i], {i, 0, 2*n}], cond, u][[1]]; Do[f = OEqR[f, Subscript[u, k]], {k, n}]; (* Generating function: *) f = Factor[f /. {x[2*n] -> x} /. {x[_] -> 1}] (* This sequence (with initial zeros dropped): *) CoefficientList[Series[f, {x, 0, 35}], x] (* L. Edson Jeffery, Oct 15 2017 *) PROG (MAGMA) [n*(n-1)*(n^2-n+1)/6: n in [0..40]]; // Vincenzo Librandi, May 22 2011 (PARI) a(n)=n*(n-1)*(n^2-n+1)/6 \\ Charles R Greathouse IV, Sep 24 2015 CROSSREFS Cf. A005900, A169938, A213751, A288486, A019298, A061907, A244497, A244879, A244873, A244880. Cf. A000027, A000217, A019298, A244497, A244879, A244873, A244880, A293310, A293309 (magic labelings of LOOP X C_k, for k = 1..3,5..10). Cf. A293311, A293312. Sequence in context: A221793 A299282 A269700 * A053346 A227021 A180669 Adjacent sequences:  A006322 A006323 A006324 * A006326 A006327 A006328 KEYWORD nonn,easy AUTHOR Albert Rich (Albert_Rich(AT)msn.com) STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 21 23:52 EDT 2021. Contains 343156 sequences. (Running on oeis4.)