login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001040 a(n+1) = n*a(n) + a(n-1) with a(0)=0, a(1)=1.
(Formerly M2863 N1151)
37
0, 1, 1, 3, 10, 43, 225, 1393, 9976, 81201, 740785, 7489051, 83120346, 1004933203, 13147251985, 185066460993, 2789144166880, 44811373131073, 764582487395121, 13807296146243251, 263103209266016890, 5275871481466581051, 111056404320064218961, 2448516766522879398193 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

If the initial 0 and 1 are omitted, CONTINUANT transform of 1, 2, 3, 4, 5, ...

a(n+1) is the numerator of the continued fraction given by C(n) = [n, n-1,...,3,2,1], e.g., [1] = 1, [2,1]=3, [3,2,1] = 10/3, [4,3,2,1] = 43/10 etc. Cf. A001053. - Amarnath Murthy, May 02 2001

Starting (1, 3, 10, 43,...) = eigensequence of triangle A127701. - Gary W. Adamson, Dec 29 2008

For n >=2, a(n) equals the permanent of the (n-1) X (n-1) tridiagonal matrix with 1's along the superdiagonal and the subdiagonal, and consecutive integers from 1 to n along the main diagonal (see Mathematica program below). - John M. Campbell, Jul 08 2011

Generally, solution of the recurrence a(n+1) = n*a(n) + a(n-1) is a(n) = BesselI(n,-2)*(2*a(0)*BesselK(1,2)-2*a(1)*BesselK(0,2)) + (2*a(0)*BesselI(1,2)+2*a(1)*BesselI(0,2))*BesselK(n,2), and asymptotic is a(n) ~ (a(0)*BesselI(1,2)+a(1)*BesselI(0,2)) * (n-1)!. - Vaclav Kotesovec, Jan 05 2013

For n > 0: a(n) = A058294(n,n) = A102473(n,n) = A102472(n,1). - Reinhard Zumkeller, Sep 14 2014

REFERENCES

Archimedeans Problems Drive, Eureka, 22 (1959), 15.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n = 0..100

C. Cannings, The Stationary Distributions of a Class of Markov Chains, Applied Mathematics, Vol. 4 No. 5, 2013, pp. 769-773. doi: 10.4236/am.2013.45105. See Table 1.

Tomislav Doslic and R. Sharafdini, Hosoya Index of Splices, Bridges, and Necklaces, in Distance, Symmetry, and Topology in Carbon Nanomaterials, 2016, pp 147-156. Part of the Carbon Materials: Chemistry and Physics book series (CMCP, volume 9), doi:10.1007/978-3-319-31584-3_10.

R. K. Guy, Letters to N. J. A. Sloane, June-August 1968

S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.

R. Sharafdini, T. Doslic, Hosoya index of splices, bridges and necklaces, Research Gate, 2015;

N. J. A. Sloane, Transforms

Eric Weisstein's World of Mathematics, Continued Fraction Constants

Eric Weisstein's World of Mathematics, Generalized Continued Fraction

FORMULA

Generalized Fibonacci sequence for (unsigned) Laguerre triangle A021009. a(n+1) = sum{k=0..floor(n/2), C(n-k, k)(n-k)!/k!}. - Paul Barry, May 10 2004

a(-n) = a(n) for all n in Z. - Michael Somos, Sep 25 2005

E.g.f.: -I*Pi*(BesselY(1, 2*I)*BesselI(0, 2*sqrt(1-x)) - I*BesselI(1, 2)*BesselY(0, 2*I*sqrt(1-x))). Such e.g.f. computations were the result of an e-mail exchange with Gary Detlefs. After differentiation and putting x=0 one has to use simplifications. See the Abramowitz-Stegun handbook, p. 360, 9.1.16 and p. 375, 9.63. - Wolfdieter Lang, May 19 2010

Lim {n->inf} a(n)/(n-1)! = BesselI(0,2) = 2.279585302336... (see A070910). - Vaclav Kotesovec, Jan 05 2013

a(n) = 2*(BesselI(0,2)*BesselK(n,2) - BesselI(n,-2)*BesselK(0,2)). - Vaclav Kotesovec, Jan 05 2013

a(n) = (n-1)!*hypergeometric([1-n/2,1/2-n/2],[1,1-n,1-n], 4) for n >= 2. - Peter Luschny, Sep 10 2014

0 = a(n)*(-a(n+2)) + a(n+1)*(+a(n+1) + a(n+2) - a(n+3)) + a(n+2)*(+a(n+2)) for all n in Z. - Michael Somos, Sep 13 2014

Observed: a(n) = A070910*(n-1)!*(1 + 1/(n-1) + 1/(2*(n-1)^2) + O((n-1)^-3)). - A.H.M. Smeets, Aug 19 2018

EXAMPLE

G.f. = x + x^2 + 3*x^3 + 10*x^4 + 43*x^5 + 225*x^6 + 1393*x^7 + 9976*x^8 + ...

MAPLE

A001040 := proc(n)

    if n <= 1 then

        n;

    else

        (n-1)*procname(n-1)+procname(n-2) ;

    end if;

end proc: # R. J. Mathar, Mar 13 2015

MATHEMATICA

Table[Permanent[Array[KroneckerDelta[#1, #2]*(#1) + KroneckerDelta[#1, #2 - 1] + KroneckerDelta[#1, #2 + 1] &, {n - 1, n - 1}]], {n, 2, 30}] (* John M. Campbell, Jul 08 2011 *)

Join[{0}, RecurrenceTable[{a[0]==1, a[1]==1, a[n]==n a[n-1]+a[n-2]}, a[n], {n, 30}]] (* Harvey P. Dale, Aug 14 2011 *)

FullSimplify[Table[2(-BesselI[n, -2]BesselK[0, 2]+BesselI[0, 2]BesselK[n, 2]), {n, 0, 20}]] (* Vaclav Kotesovec, Jan 05 2013 *)

PROG

(PARI) {a(n) = contfracpnqn( vector(abs(n), i, i))[1, 2]}; /* Michael Somos, Sep 25 2005 */

(Haskell)

a001040 n = a001040_list !! n

a001040_list = 0 : 1 : zipWith (+)

   a001040_list (zipWith (*) [1..] $ tail a001040_list)

-- Reinhard Zumkeller, Mar 05 2013

(Sage)

def A001040(n):

    if n < 2: return n

    return factorial(n-1)*hypergeometric([1-n/2, -n/2+1/2], [1, 1-n, 1-n], 4)

[round(A001040(n).n(100)) for n in (0..23)] # Peter Luschny, Sep 10 2014

CROSSREFS

A column of A058294. Cf. A001053.

Cf. A127701. - Gary W. Adamson, Dec 29 2008

Similar recurrences: A001053, A058279, A058307. - Wolfdieter Lang, May 19 2010

Cf. A102472, A102473.

Sequence in context: A030971 A248687 A006932 * A181949 A162286 A032269

Adjacent sequences:  A001037 A001038 A001039 * A001041 A001042 A001043

KEYWORD

easy,nonn,nice,frac

AUTHOR

N. J. A. Sloane, R. K. Guy

EXTENSIONS

Definition clarified by _A. H. P. Smeets_, August 19 2018

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 20:25 EST 2019. Contains 320223 sequences. (Running on oeis4.)