The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A001039 a(n) = (p^p-1)/(p-1) where p = prime(n). (Formerly M2964 N1199) 7
 3, 13, 781, 137257, 28531167061, 25239592216021, 51702516367896047761, 109912203092239643840221, 949112181811268728834319677753, 91703076898614683377208150526107718802981 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES W. F. Lunnon et al., Arithmetic properties of Bell numbers to a composite modulus I, Acta Arith., 35 (1979), 1-16. [From N. J. A. Sloane, Feb 07 2009] T. S. Motzkin, Sorting numbers ...: for a link to an annotated scanned version of this paper see A000262. T. S. Motzkin, Sorting numbers for cylinders and other classification numbers, in Combinatorics, Proc. Symp. Pure Math. 19, AMS, 1971, pp. 167-176. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS T. D. Noe, Table of n, a(n) for n=1..26 J. Levine and R. E. Dalton, Minimum periods, modulo p, of first-order Bell exponential integers, Math. Comp., 16 (1962), 416-423. P. L. Montgomery, S. Nahm, S. S. Wagstaff Jr, The period of the Bell numbers modulo a prime, Math. Comp. 79 (2010) 1793-1800 MAPLE for i from 1 to 20 do printf(`%d, `, (ithprime(i)^ithprime(i) -1)/(ithprime(i)-1)) od: MATHEMATICA Table[(Prime[n]^Prime[n] - 1)/(Prime[n] - 1), {n, 1, 10}] (#^#-1)/(#-1)&/@Prime[Range[10]] (* Harvey P. Dale, Apr 09 2016 *) CROSSREFS Cf. A054767, A214811. Sequence in context: A290376 A089711 A173759 * A065831 A092540 A073428 Adjacent sequences:  A001036 A001037 A001038 * A001040 A001041 A001042 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from James A. Sellers, Jul 10 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 00:27 EDT 2020. Contains 336441 sequences. (Running on oeis4.)