This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A102473 Triangle read by rows. Let S(k) be the sequence defined by F(0)=0, F(1)=1, F(n-1) + (n+k)*F(n) = F(n+1). E.g. S(0) = 0,1,1,3,10,43,225,1393,9976,81201, ... Then S(0), S(1), S(2), ... are written next to each other, vertically, with the initial term of each on the next row down. The order of the terms in the rows are then reversed. 5
 1, 1, 1, 1, 2, 3, 1, 3, 7, 10, 1, 4, 13, 30, 43, 1, 5, 21, 68, 157, 225, 1, 6, 31, 130, 421, 972, 1393, 1, 7, 43, 222, 931, 3015, 6961, 9976, 1, 8, 57, 350, 1807, 7578, 24541, 56660, 81201, 1, 9, 73, 520, 3193, 16485, 69133, 223884, 516901, 740785, 1, 10, 91, 738 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,5 COMMENTS For this triangle, the algorithm that generates the Bernoulli numbers gives 3/2, then 1/6, 1/24, ... 1/n! T(n,n) = A001040(n); T(n,k) = A058294(n,k), k = 1..n. - Reinhard Zumkeller, Sep 14 2014 LINKS Reinhard Zumkeller, Rows n = 1..125 of triangle, flattened EXAMPLE Triangle begins: 0 0 1 0 1 1 0 1 2 3 0 1 3 7 10 0 1 4 13 30 43 ... (the zeros are omitted). PROG (Haskell) a102473 n k = a102473_tabl !! (n-1) !! (k-1) a102473_row n = a102473_tabl !! (n-1) a102473_tabl = [1] : [1, 1] : f [1] [1, 1] 2 where    f us vs x = ws : f vs ws (x + 1) where                ws = 1 : zipWith (+) ([0] ++ us) (map (* x) vs) -- Reinhard Zumkeller, Sep 14 2014 CROSSREFS Mirror image of triangle in A102472. Cf. A001040, A058294, A247365 (central terms). Sequence in context: A152821 A071943 A062869 * A011117 A069269 A193092 Adjacent sequences:  A102470 A102471 A102472 * A102474 A102475 A102476 KEYWORD easy,nonn,tabl AUTHOR Russell Walsmith (russw(AT)lycos.com), Jan 09 2005 EXTENSIONS Entry revised by N. J. A. Sloane, Jul 09 2005 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 22 04:32 EDT 2019. Contains 321406 sequences. (Running on oeis4.)