OFFSET
0,3
COMMENTS
Numerator of convergent to BesselI(0,2)/BesselI(1,2) for which the continued fraction expansion is [1,2,3....,n]. - Benoit Cloitre, Mar 27 2003
Numerator of continued fraction C(n) minus denominator of continued fraction C(n), where C(n) = [ 1; 2,3,4,...n ]. - Melvin Peralta, Jan 17 2017
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..445 (terms n=0..100 from T. D. Noe)
Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
C. Cannings, The Stationary Distributions of a Class of Markov Chains, Applied Mathematics, Vol. 4 No. 5, 2013, pp. 769-773.
S. Janson, A divergent generating function that can be summed and analysed analytically, Discrete Mathematics and Theoretical Computer Science; 2010, Vol. 12, No. 2, 1-22.
Russell Walsmith, Cl-Chemy II
FORMULA
From Wouter Meeussen, Feb 02 2001: (Start)
a(2*r+1) = Sum_{j=0..r} (binomial(r+j, r-j)*(r+j)!/(r-j)! - binomial(r + j, r-j-1)*(r+j+1)!/(r-j)!) and
a(2*r) = Sum_{j=0..r} (binomial(r+j+1, r-j)*(r+j+1)!/(r-j)! - binomial(r +j, r-j)*(r+j+1)!/(r-j+1)! + binomial(r+j+1, r-j)*(r+j+1)!/(r-j)!). (End)
E.g.f.: Pi*(BesselI(2, 2)*BesselY(2, 2*I*sqrt(1-x)) - BesselY(2,2*I)*BesselI(2, 2*sqrt(1-x)))/(1-x). Motivated to look into e.g.f.'s for such recurrences by email exchange with Gary Detlefs. One has to use simplifications after differentiation and putting x=0. See Abramowitz-Stegun handbook p. 360, 9.1.16. - Wolfdieter Lang, May 18 2010
Limit n->infinity a(n)/(n+1)! = BesselI(0,2)-BesselI(1,2) = 0.688948447698738204... - Vaclav Kotesovec, Jan 05 2013
a(n) = Sum_{k = 0..floor((n-1)/2)} (n-2*k-1)!*binomial(n-k-1,k)* binomial(n-k+1,k+2). Cf. A058798. - Peter Bala, Aug 01 2013
a(n) = (n+1)!*hypergeometric([1/2-n/2,1-n/2],[3,-1-n,1-n],4)/2 for n >= 2. - Peter Luschny, Sep 10 2014
E.g.f.: 2*(I(2,2)*K(2, 2*sqrt(1-x)) - K(2,2)*I(2, 2*sqrt(1-x)))/(1-x), where I(n, x) and K(n, x) are the modified Bessel functions of the second kind. - G. C. Greubel, Oct 07 2019
MAPLE
a:= proc(n) option remember;
if n<2 then n
else (n+1)*a(n-1) + a(n-2)
fi;
end:
seq(a(n), n=0..30); # G. C. Greubel, Oct 07 2019
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==(n+1)*a[n-1]+a[n-2]}, a, {n, 0, 30}] (* Vincenzo Librandi, May 06 2013 *)
Table[FullSimplify[(-BesselI[2+n, -2] * BesselK[2, 2] + BesselI[2, 2] * BesselK[2+n, 2]) / (BesselI[3, 2] * BesselK[2, 2] + BesselI[2, 2] * BesselK[3, 2])], {n, 0, 20}] (* Vaclav Kotesovec, Feb 14 2014 *)
a[n_]:= a[n]= If[n<2, n, (n+1)*a[n-1] +a[n-2]]; Table[a[n], {n, 0, 30}] (* G. C. Greubel, Oct 07 2019 *)
PROG
(Magma) [n le 2 select n-1 else Self(n-2)+Self(n-1)*(n): n in [1..30]]; // Vincenzo Librandi, May 06 2013
(Sage)
def A058307(n):
if n < 2: return n
return factorial(n+1)*hypergeometric([1/2-n/2, 1-n/2], [3, -1-n, 1-n], 4)/2
[round(A058307(n).n(100)) for n in (0..21)] # Peter Luschny, Sep 10 2014
(PARI) my(m=30, v=concat([0, 1], vector(m-2))); for(n=3, m, v[n]=n*v[n-1] +v[n-2]); v \\ G. C. Greubel, Nov 24 2018
(Sage)
@CachedFunction
def a(n):
if (n<2): return n
else: return (n+1)*a(n-1) + a(n-2)
[a(n) for n in (0..30)] # G. C. Greubel, Nov 24 2018
(GAP)
a:= function(n)
if n<2 then return n;
else return (n+1)*a(n-1) + a(n-2);
fi;
end;
List([0..30], n-> a(n) ); # G. C. Greubel, Oct 07 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 09 2000
STATUS
approved