login
A102472
Triangle read by rows. Let S(k) be the sequence defined by F(0)=0, F(1)=1, F(n-1) + (n+k)*F(n) = F(n+1). E.g. S(0) = 0, 1, 1, 3, 10, 43, 225, 1393, 9976, 81201, ... Then S(0), S(1), S(2), ... are written vertically, next to each other, with the initial term of each on the next row down.
5
1, 1, 1, 3, 2, 1, 10, 7, 3, 1, 43, 30, 13, 4, 1, 225, 157, 68, 21, 5, 1, 1393, 972, 421, 130, 31, 6, 1, 9976, 6961, 3015, 931, 222, 43, 7, 1, 81201, 56660, 24541, 7578, 1807, 350, 57, 8, 1, 740785, 516901, 223884, 69133, 16485, 3193, 520, 73, 9, 1
OFFSET
1,4
COMMENTS
T(n,1) = A001040(n); T(n,k) = A058294(n,n+k-1), k = 1..n. - Reinhard Zumkeller, Sep 14 2014
This triangle results when the first column is removed from A062323. - Georg Fischer, Jul 26 2023
LINKS
EXAMPLE
Triangle begins:
[1] 1;
[2] 1, 1;
[3] 3, 2, 1;
[4] 10, 7, 3, 1;
[5] 43, 30, 13, 4, 1;
[6] 225, 157, 68, 21, 5, 1;
[7] 1393, 972, 421, 130, 31, 6, 1;
[8] 9976, 6961, 3015, 931, 222, 43, 7, 1;
PROG
(Haskell)
a102472 n k = a102472_tabl !! (n-1) !! (k-1)
a102472_row n = a102472_tabl !! (n-1)
a102472_tabl = map reverse a102473_tabl
-- Reinhard Zumkeller, Sep 14 2014
CROSSREFS
Mirror image of triangle in A102473.
Cf. A001040, A058294, A062323, A247365 (central terms).
Sequence in context: A307214 A185967 A188111 * A267629 A101894 A187105
KEYWORD
easy,nonn,tabl
AUTHOR
Russell Walsmith, Jan 09 2005
EXTENSIONS
Entry revised by N. J. A. Sloane, Jul 09 2005
STATUS
approved