login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000281 Expansion of cos(x)/cos(2x).
(Formerly M3163 N1281)
15
1, 3, 57, 2763, 250737, 36581523, 7828053417, 2309644635483, 898621108880097, 445777636063460643, 274613643571568682777, 205676334188681975553003, 184053312545818735778213457, 193944394596325636374396208563 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

a(n) is (2n)! times the coefficient of x^(2n) in the Taylor series for cos(x)/cos(2x).

REFERENCES

J. W. L. Glaisher, "On the coefficients in the expansions of cos x / cos 2x and sin x / cos 2x", Quart. J. Pure and Applied Math., 45 (1914), 187-222.

I. J. Schwatt, Intro. to Operations with Series, Chelsea, p. 278.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

T. D. Noe, Table of n, a(n) for n=0..50

Kwang-Wu Chen, An Interesting Lemma for Regular C-fractions, J. Integer Seqs., Vol. 6, 2003.

D. Dumont, Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers, Adv. Appl. Math., 16 (1995), 275-296.

Matthieu Josuat-Vergès and Jang Soo Kim, Touchard-Riordan formulas, T-fractions, and Jacobi's triple product identity, arXiv:1101.5608 [math.CO] (2011)

D. Shanks, Generalized Euler and class numbers. Math. Comp. 21 (1967) 663-688, sequence c(2,n).

D. Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22 (1968), 699

D. Shanks, Generalized Euler and class numbers, Math. Comp. 21 (1967), 689-694; 22 (1968), 699. [Annotated scanned copy]

FORMULA

a(n) = Sum_{k=0..n} (-1)^k*binomial(2n, 2k)*A000364(n-k)*4^(n-k). - Philippe Deléham, Jan 26 2004

E.g.f.: Sum_{k>=0} a(k)x^(2k)/(2k)! = cos(x)/cos(2x).

a(n) is approximately 2^(4*n-3)*(2*n-1)!*sqrt(2)/((Pi^(2*n-1))*(2*n-1)). The approximation is quite good a(250) is of the order of 10^1181 and this formula is accurate to 238 digits. - Simon Plouffe, Jan 31 2007

G.f.: 1 / (1 - 1*3*x / (1 - 4*4*x / (1 - 5*7*x / (1 - 8*8*x / (1 - 9*11*x / ... ))))). - Michael Somos, May 12 2012

G.f.: 1/E(0) where E(k) = 1 - 3*x - 16*x*k*(2*k+1) - 16*x^2*(k+1)^2*(4*k+1)*(4*k+3)/E(k+1) (continued fraction, 1-step). - Sergei N. Gladkovskii, Sep 17 2012

G.f.: T(0)/(1-3*x), where T(k) = 1 - 16*x^2*(4*k+1)*(4*k+3)*(k+1)^2/( 16*x^2*(4*k+1)*(4*k+3)*(k+1)^2 - (32*x*k^2+16*x*k+3*x-1 )*(32*x*k^2+80*x*k+51*x -1)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 11 2013

From Peter Bala, Mar 09 2015: (Start)

a(n) =(-1)^n*4^(2*n)*E(2*n,1/4), where E(n,x) denotes the n-th Euler polynomial.

O.g.f.: Sum_{n >= 0} 1/2^n * Sum_{k = 0..n} (-1)^k*binomial(n,k)/(1 + x*(4*k + 1)^2) = 1 + 3*x + 57*x^2 + 2763*x^3 + ....

We appear to have the asymptotic expansion Pi/(2*sqrt(2)) - Sum {k = 0..n - 1} (-1)^floor(k/2)/(2*k + 1) ~ 1/(2*n) - 3/(2*n)^3 + 57/(2*n)^5 - 2763/(2*n)^7 + .... See A093954.

Bisection of A001586. See also A188458 and A212435. Second row of A235605 (read as a square array).

The expansion of exp( Sum_{n >= 1} a(n)*x^n/n ) appears to have integer coefficients. See A255883. (End)

From Peter Luschny, Mar 11 2015: (Start)

a(n) = ((-64)^n/((n+1/2)))*(B(2*n+1,7/8)-B(2*n+1,3/8)), B(n,x) Bernoulli polynomials.

a(n) = 2*(-16)^n*LerchPhi(-1, -2*n, 1/4).

a(n) = (-1)^n*Sum_{0..2*n} 2^k*C(2*n,k)*E(k), E(n) the Euler secant numbers A122045.

a(n) = (-4)^n*SKP(2*n,1/2) where SKP are the Swiss-Knife polynomials A153641.

a(n) = (-1)^n*2^(6*n+1)*(Zeta(-2*n,1/8) - Zeta(-2*n,5/8)), where Zeta(a,z) is the generalized Riemann zeta function. (End)

EXAMPLE

cos x / cos 2*x = 1 + 3*x^2/2 + 19*x^4/8 + 307*x^6/80 + ...

MAPLE

a := n -> (-1)^n*2^(6*n+1)*(Zeta(0, -2*n, 1/8)-Zeta(0, -2*n, 5/8)):

seq(a(n), n=0..13); # Peter Luschny, Mar 11 2015

MATHEMATICA

With[{nn=30}, Take[CoefficientList[Series[Cos[x]/Cos[2x], {x, 0, nn}], x] Range[0, nn]!, {1, -1, 2}]] (* Harvey P. Dale, Oct 06 2011 *)

PROG

(PARI) {a(n) = if( n<0, 0, n*=2; n! * polcoeff( cos(x + x * O(x^n)) / cos(2*x + x * O(x^n)), n))}; /* Michael Somos, Feb 09 2006 */

CROSSREFS

Cf. A000364 A086646.

Cf. A064069. Bisection of A000825, A001586.

Cf. A098432. Cf. A093954, A188458, A212435, A235605, A255883.

Sequence in context: A281184 A012064 A012204 * A086220 A127263 A134723

Adjacent sequences:  A000278 A000279 A000280 * A000282 A000283 A000284

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 29 13:14 EDT 2017. Contains 284270 sequences.