login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000283 a(n) = a(n-1)^2 + a(n-2)^2. 26
0, 1, 1, 2, 5, 29, 866, 750797, 563696885165, 317754178345286893212434, 100967717855888389973004846476977145423449281581 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015. See page 5.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..14

FORMULA

a(0)=0; for n>=1, a(n)=floor(A^(2^(n-1))), where

A=1.235392737785436889622331013228440824347457186913679454733601897236639743839118542826528455451978134... - Benoit Cloitre, May 03 2003

MAPLE

A000283 := proc(n) option remember; if n <= 1 then n else A000283(n-2)^2+A000283(n-1)^2; fi; end;

MATHEMATICA

Join[{a=0, b=1}, Table[c=a^2+b^2; a=b; b=c, {n, 12}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011*)

RecurrenceTable[{a[n + 2] == a[n + 1]^2 + a[n]^2, a[0] == 0, a[1] == 1}, a, {n, 0, 12}] (* Emanuele Munarini, Mar 30 2017 *)

PROG

(PARI) a(n)=if(n<2, n>0, a(n-1)^2+a(n-2)^2)

(Maxima) a(n) := if n=0 then 0 elseif n=1 then 1 else a(n-1)^2 + a(n-2)^2;

makelist(a(n), n, 0, 12); /* Emanuele Munarini, Mar 30 2017 */

CROSSREFS

Cf. A000278.

Sequence in context: A265773 A098717 A059784 * A121910 A073833 A229918

Adjacent sequences:  A000280 A000281 A000282 * A000284 A000285 A000286

KEYWORD

nonn,easy

AUTHOR

Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 18 10:38 EST 2017. Contains 294887 sequences.