The OEIS is supported by the many generous donors to the OEIS Foundation.



Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”).

Other ways to Give
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000282 Finite automata.
(Formerly M3169 N1285)
3, 70, 3783, 338475, 40565585, 6061961733, 1083852977811, 225615988054171, 53595807366038234, 14308700593468127485, 4241390625289880226714, 1382214286200071777573643, 491197439886557439295166226, 189044982636675290371386547592, 78334771617452038208125184627931, 34771576300926271400714044414858372 (list; graph; refs; listen; history; text; internal format)



Given the name of A054747, another name for this sequence can be "Number of inequivalent n-state 2-input 2-output connected automata with respect to an input permutation." - Petros Hadjicostas, Mar 08 2021


N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


Table of n, a(n) for n=1..16.

Christian G. Bower, PARI programs for transforms, 2007.

Michael A. Harrison, A census of finite automata, Canad. J. Math., 17, No. 1, (1965), 100-113. [First apply Theorem 6.2 (p. 107) with k = p = 2 to get A054747. Then apply Theorem 7.2 (p. 110) to get the number of classes of connected automata counted by A054747. - Petros Hadjicostas, Mar 08 2021]

N. J. A. Sloane, Maple programs for transforms, 2001-2020.


Inverse Euler transform of A054747. - Petros Hadjicostas, Mar 08 2021


(PARI) /* This program is a modification of Christian G. Bower's PARI program for the inverse Euler transform from the link above. */

lista(nn) = {local(A=vector(nn+1)); for(n=1, nn+1, A[n]=if(n==1, 1, A054747(n-1))); local(B=vector(#A-1, n, 1/n), C); A[1] = 1; C = log(Ser(A)); A=vecextract(A, "2.."); for(i=1, #A, A[i] = polcoeff(C, i)); A = dirdiv(A, B); } \\ Petros Hadjicostas, Mar 08 2021


Cf. A002854, A054732, A054747.

Sequence in context: A061173 A156598 A082942 * A322775 A338408 A277413

Adjacent sequences: A000279 A000280 A000281 * A000283 A000284 A000285




N. J. A. Sloane


More terms from Vladeta Jovovic, Apr 22 2000

Terms a(14)-a(16) from Petros Hadjicostas, Mar 08 2021



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 28 20:13 EST 2022. Contains 358421 sequences. (Running on oeis4.)