OFFSET
0,4
LINKS
T. D. Noe, Table of n, a(n) for n = 0..25
W. Duke, Stephen J. Greenfield, and Eugene R. Speer, Properties of a Quadratic Fibonacci Recurrence, J. Integer Seq. 1 (1998), Article #98.1.8.
FORMULA
a(2n) is asymptotic to A^(sqrt(2)^(2n-1)) where A=1.668751581493687393311628852632911281060730869124873165099170786836201970866312366402366761987... and a(2n+1) to B^(sqrt(2)^(2n)) where B=1.693060557587684004961387955790151505861127759176717820241560622552858106116817244440438308887... See reference for proof. - Benoit Cloitre, May 03 2003
MAPLE
MATHEMATICA
Join[{a=0, b=1}, Table[c=a^2+b; a=b; b=c, {n, 16}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011 *)
RecurrenceTable[{a[n +2] == a[n +1] + a[n]^2, a[0] == 1, a[1] == 1}, a, {n, 0, 16}] (* Robert G. Wilson v, Apr 14 2017 *)
PROG
(PARI) a(n)=if(n<2, n>0, a(n-1)+a(n-2)^2)
(Sage)
def A000278():
x, y = 0, 1
while True:
yield x
x, y = x + y, x * x
a = A000278(); [next(a) for i in range(18)] # Peter Luschny, Dec 17 2015
(Magma) [n le 2 select n-1 else Self(n-1) + Self(n-2)^2: n in [1..18]]; // Vincenzo Librandi, Dec 17 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)
EXTENSIONS
Name edited by Petros Hadjicostas, Nov 03 2019
STATUS
approved