login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A000278
a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1.
17
0, 1, 1, 2, 3, 7, 16, 65, 321, 4546, 107587, 20773703, 11595736272, 431558332068481, 134461531248108526465, 186242594112190847520182173826, 18079903385772308300945867582153787570051, 34686303861638264961101080464895364211215702792496667048327
OFFSET
0,4
LINKS
W. Duke, Stephen J. Greenfield, and Eugene R. Speer, Properties of a Quadratic Fibonacci Recurrence, J. Integer Seq. 1 (1998), Article #98.1.8.
FORMULA
a(2n) is asymptotic to A^(sqrt(2)^(2n-1)) where A=1.668751581493687393311628852632911281060730869124873165099170786836201970866312366402366761987... and a(2n+1) to B^(sqrt(2)^(2n)) where B=1.693060557587684004961387955790151505861127759176717820241560622552858106116817244440438308887... See reference for proof. - Benoit Cloitre, May 03 2003
MAPLE
A000278 := proc(n) option remember; if n <= 1 then n else A000278(n-2)^2+A000278(n-1); fi; end;
MATHEMATICA
Join[{a=0, b=1}, Table[c=a^2+b; a=b; b=c, {n, 16}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011 *)
RecurrenceTable[{a[n +2] == a[n +1] + a[n]^2, a[0] == 1, a[1] == 1}, a, {n, 0, 16}] (* Robert G. Wilson v, Apr 14 2017 *)
PROG
(PARI) a(n)=if(n<2, n>0, a(n-1)+a(n-2)^2)
(Sage)
def A000278():
x, y = 0, 1
while True:
yield x
x, y = x + y, x * x
a = A000278(); [next(a) for i in range(18)] # Peter Luschny, Dec 17 2015
(Magma) [n le 2 select n-1 else Self(n-1) + Self(n-2)^2: n in [1..18]]; // Vincenzo Librandi, Dec 17 2015
CROSSREFS
Sequence in context: A002854 A036356 A034732 * A270525 A153787 A141795
KEYWORD
nonn
AUTHOR
Stephen J. Greenfield (greenfie(AT)math.rutgers.edu)
EXTENSIONS
Name edited by Petros Hadjicostas, Nov 03 2019
STATUS
approved