The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000278 a(n) = a(n-1) + a(n-2)^2 for n >= 2 with a(0) = 0 and a(1) = 1. 16
 0, 1, 1, 2, 3, 7, 16, 65, 321, 4546, 107587, 20773703, 11595736272, 431558332068481, 134461531248108526465, 186242594112190847520182173826, 18079903385772308300945867582153787570051, 34686303861638264961101080464895364211215702792496667048327 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 LINKS T. D. Noe, Table of n, a(n) for n = 0..25 W. Duke, Stephen J. Greenfield, and Eugene R. Speer, Properties of a Quadratic Fibonacci Recurrence, J. Integer Seq. 1 (1998), Article #98.1.8. FORMULA a(2n) is asymptotic to A^(sqrt(2)^(2n-1)) where A=1.668751581493687393311628852632911281060730869124873165099170786836201970866312366402366761987... and a(2n+1) to B^(sqrt(2)^(2n)) where B=1.693060557587684004961387955790151505861127759176717820241560622552858106116817244440438308887... See reference for proof. - Benoit Cloitre, May 03 2003 MAPLE A000278 := proc(n) option remember; if n <= 1 then n else A000278(n-2)^2+A000278(n-1); fi; end; a[ -2]:=0: a[ -1]:=1:a[0]:=1: a[1]:=2: for n from 2 to 13 do a[n]:=a[n-1]+a[n-2]^2 od: seq(a[n], n=-2..13); # Zerinvary Lajos, Mar 19 2009 MATHEMATICA Join[{a=0, b=1}, Table[c=a^2+b; a=b; b=c, {n, 16}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011 *) RecurrenceTable[{a[n +2] == a[n +1] + a[n]^2, a[0] == 1, a[1] == 1}, a, {n, 0, 16}] (* Robert G. Wilson v, Apr 14 2017 *) PROG (PARI) a(n)=if(n<2, n>0, a(n-1)+a(n-2)^2) (Sage) def A000278():     x, y = 0, 1     while True:         yield x         x, y = x + y, x * x a = A000278(); [next(a) for i in range(18)]  # Peter Luschny, Dec 17 2015 (MAGMA) [n le 2 select n-1 else Self(n-1) + Self(n-2)^2: n in [1..18]]; // Vincenzo Librandi, Dec 17 2015 CROSSREFS Cf. A000283, A058182. Sequence in context: A002854 A036356 A034732 * A270525 A153787 A141795 Adjacent sequences:  A000275 A000276 A000277 * A000279 A000280 A000281 KEYWORD nonn AUTHOR Stephen J. Greenfield (greenfie(AT)math.rutgers.edu) EXTENSIONS Name edited by Petros Hadjicostas, Nov 03 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 21 16:24 EDT 2020. Contains 337918 sequences. (Running on oeis4.)