login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A058182 Quadratic recurrence a(n) = a(n-1)^2 + a(n-2), a(0)=1 , a(1)=0. 7
1, 0, 1, 1, 2, 5, 27, 734, 538783, 290287121823, 84266613096281243382112, 7100862082718357559748563880517486086728702367, 50422242317787290639189291009890702507917377925161079229314384058371278254659634544914784801 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,5

COMMENTS

Has property that CONTINUANT([1, 1, 2, 5, 27, 734, 538783, ...]) = [1, 2, 5, 27, 734, 538783, ...]. - N. J. A. Sloane Jul 19 2002

For n > 2, a(n) is the numerator of the simplified continued fraction resulting from [a(2), a(3), ..., a(n)]. Therefore, for n > 2, a(n) represents the number of ways to tile a (n-2)-board with dominoes and stackable squares, where nothing can be stacked on a domino but otherwise for 2 < i < n, the i-th cell may be stacked by as many as a(i) squares (see Benjamin, A. and Quinn, J.). - Melvin Peralta, Feb 22 2016

REFERENCES

Arthur Benjamin and Jennifer Quinn, Proofs that Really Count, Mathematical Association of America, 2003, see pages 49-51.

LINKS

Melvin Peralta, Table of n, a(n) for n = 0..15

N. J. A. Sloane, Transforms

Index entries for sequences of form a(n+1)=a(n)^2 + ...

FORMULA

a(n)^2 = a(n+1) - a(n-1), a(-1-n) = -a(n).

For n>1, a(n+1) = floor(c^(2^n)) where c=1.108604586393628626769904017539.... - Benoit Cloitre, Nov 30 2002

a(n+1) = a(n)^2+floor(sqrt(a(n))) = A000290(a(n))+A000196(a(n)) for n>2. - Reinhard Zumkeller, May 16 2006

EXAMPLE

a(6) = a(5)^2 + a(4) = 5^2+2 = 27.

MATHEMATICA

Join[{a=1, b=0}, Table[c=a+b^2; a=b; b=c, {n, 12}]] (* Vladimir Joseph Stephan Orlovsky, Jan 22 2011*)

Join[{1}, Transpose[NestList[{Last[#], Last[#]^2+First[#]}&, {0, 1}, 12]][[1]]] (* Harvey P. Dale, May 15 2011 *)

RecurrenceTable[{a[0] == 1, a[1] == 0, a[n] == a[n-1]^2 + a[n-2]}, a, {n, 13}] (* Vincenzo Librandi, Feb 23 2016 *)

PROG

(PARI) a(n)=if(n<0, -a(-1-n), if(n<2, 1-n, a(n-1)^2+a(n-2))) /* Michael Somos, May 05 2005 */

(MAGMA) I:=[1, 0]; [n le 2 select I[n] else Self(n-1)^2+Self(n-2): n in [1..13]]; // Vincenzo Librandi, Feb 23 2016

CROSSREFS

Cf. A000278, A005605, A058181.

Sequence in context: A097565 A079716 A203195 * A057438 A002795 A208218

Adjacent sequences:  A058179 A058180 A058181 * A058183 A058184 A058185

KEYWORD

nonn,nice,eigen

AUTHOR

Henry Bottomley, Nov 15 2000

EXTENSIONS

More terms from Reinhard Zumkeller, May 16 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 12 19:19 EST 2018. Contains 317116 sequences. (Running on oeis4.)