OFFSET
0,2
COMMENTS
Also number of sequences S of length n with entries in {1,..,q} where q = 3, satisfying the condition that adjacent terms differ in absolute value by exactly 1, see examples. - W. Edwin Clark, Oct 17 2008
REFERENCES
P. de la Harpe, Topics in Geometric Group Theory, Univ. Chicago Press, 2000, p. 156.
LINKS
Reinhard Zumkeller, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (0,2)
FORMULA
G.f.: (1+3*x+2*x^2)/(1-2*x^2).
a(n) = 2*a(n-2), n>2. - Harvey P. Dale, Oct 22 2011
EXAMPLE
For n = 2 the a(2) = 4 sequences are (1,2),(2,1),(2,3),(3,2). - W. Edwin Clark, Oct 17 2008
From Joerg Arndt, Nov 23 2012: (Start)
There are a(6) = 16 such words of length 6:
[ 1] [ 1 2 1 2 1 2 ]
[ 2] [ 1 2 1 2 3 2 ]
[ 3] [ 1 2 3 2 1 2 ]
[ 4] [ 1 2 3 2 3 2 ]
[ 5] [ 2 1 2 1 2 1 ]
[ 6] [ 2 1 2 1 2 3 ]
[ 7] [ 2 1 2 3 2 1 ]
[ 8] [ 2 1 2 3 2 3 ]
[ 9] [ 2 3 2 1 2 1 ]
[10] [ 2 3 2 1 2 3 ]
[11] [ 2 3 2 3 2 1 ]
[12] [ 2 3 2 3 2 3 ]
[13] [ 3 2 1 2 1 2 ]
[14] [ 3 2 1 2 3 2 ]
[15] [ 3 2 3 2 1 2 ]
[16] [ 3 2 3 2 3 2 ]
(End)
MATHEMATICA
CoefficientList[Series[(1+3*x+2*x^2)/(1-2*x^2), {x, 0, 40}], x](* Jean-François Alcover, Mar 21 2011 *)
Join[{1}, Transpose[NestList[{Last[#], 2First[#]}&, {3, 4}, 40]][[1]]] (* Harvey P. Dale, Oct 22 2011 *)
PROG
(Haskell)
import Data.List (transpose)
a063759 n = a063759_list !! n
a063759_list = concat $ transpose [a151821_list, a007283_list]
-- Reinhard Zumkeller, Dec 16 2013
(PARI) a(n)=([0, 1; 2, 0]^n*[1; 3])[1, 1] \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
KEYWORD
nonn,nice,easy
AUTHOR
N. J. A. Sloane, Aug 14 2001
EXTENSIONS
Information from A145751 included by Joerg Arndt, Dec 03 2012
STATUS
approved