login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A063760
Numbers whose sum of non-unitary divisors is a prime and sets a new record for such primes.
1
4, 9, 25, 36, 144, 441, 676, 1089, 1296, 1764, 2304, 4900, 5184, 9216, 15876, 33124, 36100, 43264, 51984, 82944, 115600, 142884, 147456, 224676, 266256, 298116, 331776, 389376, 467856, 898704, 944784, 1016064, 1587600, 2286144, 3111696
OFFSET
1,1
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..100 (terms 1..51 from Harry J. Smith)
EXAMPLE
441 is a term because sigma(441) - usigma(441) = 241, a prime.
MATHEMATICA
fun[p_, e_] := (p^(e+1)-1)/(p-1); nusigma[1] = 0; nusigma[n_] := Times @@ (fun @@@ (f = FactorInteger[n])) - Times @@ (1 + Power @@@ f); s = {}; pm = 0; Do[If[ PrimeQ[(p = nusigma[n])] && p > pm, pm = p; AppendTo[s, n] ], {n, 1, 10^5}]; s (* Amiram Eldar, Sep 24 2019 *)
PROG
(PARI) u(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d));
a=0; for(n=1, 50000, x=sigma(n)-u(n); if(isprime(x), b=x; if(b>a, a=b; print(n))))
(PARI) u(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))
{ n=-1; a=0; for (m=1, 10^9, if(isprime(b=sigma(m) - u(m)), if(b>a, a=b; write("b063760.txt", n++, " ", m); if (n==50, break))) ) } \\ Harry J. Smith, Aug 30 2009
CROSSREFS
Cf. A048146.
Sequence in context: A063577 A087058 A046659 * A238334 A130448 A046451
KEYWORD
nonn
AUTHOR
Jason Earls, Aug 24 2001
EXTENSIONS
Six more terms from Harry J. Smith, Aug 30 2009
Offset corrected by Amiram Eldar, Sep 24 2019
STATUS
approved