login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A298812
Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^10 = 1 >.
1
1, 3, 4, 6, 8, 12, 16, 24, 32, 48, 62, 87, 114, 165, 216, 312, 408, 588, 766, 1104, 1444, 2082, 2720, 3921, 5122, 7383, 9642, 13902, 18164, 26184, 34204, 49308, 64412, 92856, 121298, 174867, 228438, 329313, 430188, 620160, 810132, 1167888, 1525642, 2199372, 2873104, 4141866, 5410628, 7799973, 10189318, 14688939
OFFSET
0,2
COMMENTS
The initial coefficients for the group S, T : S^2 = T^3 = (S*T)^m = 1 > approach A029744 as m increases.
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,0,0,1,0,2,0,4,0,2,0,1,0,0,0,-1).
FORMULA
G.f.: (-2*x^18 + 3*x^16 + 3*x^15 + 6*x^14 + 6*x^13 + 9*x^12 + 9*x^11 + 12*x^10 + 12*x^9 + 12*x^8 + 12*x^7 + 10*x^6 + 9*x^5 + 7*x^4 + 6*x^3 + 4*x^2 + 3*x + 1)/(x^16 - x^12 - 2*x^10 - 4*x^8 - 2*x^6 - x^4 + 1).
a(n) = a(n-4) + 2*a(n-6) + 4*a(n-8) + 2*a(n-10) + a(n-12) - a(n-16) for n>16. - Colin Barker, Feb 06 2018
PROG
(Magma) // See Magma program in A298805.
(PARI) Vec((1 + 3*x + 4*x^2 + 6*x^3 + 7*x^4 + 9*x^5 + 10*x^6 + 12*x^7 + 12*x^8 + 12*x^9 + 12*x^10 + 9*x^11 + 9*x^12 + 6*x^13 + 6*x^14 + 3*x^15 + 3*x^16 - 2*x^18) / ((1 + x^2)^2*(1 + x^4)*(1 - 2*x^2 + x^4 - 2*x^6 + x^8)) + O(x^60)) \\ Colin Barker, Feb 06 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Feb 06 2018
STATUS
approved