|
|
A298809
|
|
Growth series for group with presentation < S, T : S^2 = T^3 = (S*T)^5 = 1 >.
|
|
1
|
|
|
1, 3, 4, 6, 8, 10, 8, 10, 6, 3, 1
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This group is finite, so the growth series is a polynomial.
Coordination sequence for truncated dodecahedron (see Karzes link). - N. J. A. Sloane, Nov 20 2019
|
|
LINKS
|
Table of n, a(n) for n=0..10.
Tom Karzes, Polyhedron Coordination Sequences
N. J. A. Sloane, The 60 vertices of the truncated dodecahedron labeled with their distance from a base vertex.
Index entries for coordination sequences
|
|
PROG
|
(Magma) See Magma program in A298805.
|
|
CROSSREFS
|
Cf. A008579, A298802, A298805.
Sequence in context: A049433 A250984 A135251 * A335194 A307647 A088070
Adjacent sequences: A298806 A298807 A298808 * A298810 A298811 A298812
|
|
KEYWORD
|
nonn,easy,fini,full
|
|
AUTHOR
|
John Cannon and N. J. A. Sloane, Feb 06 2018
|
|
STATUS
|
approved
|
|
|
|