login
A380415
a(n) = phi(1 + phi(3 + phi(5 + ... + phi(2*n-1)))), where phi is Euler's totient function (A000010).
6
1, 2, 6, 12, 18, 22, 42, 42, 72, 20, 48, 18, 12, 108, 20, 42, 20, 42, 20, 36, 42, 42, 36, 36, 36, 42, 20, 42, 42, 36, 36, 42, 20, 48, 48, 18, 36, 36, 36, 36, 48, 48, 20, 48, 48, 36, 20, 48, 96, 20, 96, 36, 20, 20, 42, 36, 36, 20, 36, 36, 36, 20, 20, 36, 36, 20
OFFSET
1,2
COMMENTS
Inspired by A380340, A380341 and A380342.
Conjecture 1: a(n) can be only 1, 2, 6, 12, 18, 20, 22, 36, 42, 48, 72, 96 or 108.
Conjecture 2: for n >= 320, a(n) = 20.
MATHEMATICA
A380415[n_] := Fold[EulerPhi[#2 + #] &, 0, Range[2*n - 1, 1, -2]];
Array[A380415, 100]
PROG
(PARI) a(n) = my(x=0); forstep(k=n, 1, -1, x = eulerphi(2*k-1+x)); x; \\ Michel Marcus, Jan 24 2025
(Python)
from functools import reduce
from sympy import totient
def A380415(n): return totient(reduce(lambda x, y:totient(x)+y, range((n<<1)-1, 0, -2))) # Chai Wah Wu, Jan 25 2025
CROSSREFS
KEYWORD
nonn,new
AUTHOR
Paolo Xausa, Jan 24 2025
STATUS
approved