|
|
A066080
|
|
Largest solution x to phi(x) + 1 = prime(n).
|
|
12
|
|
|
2, 6, 12, 18, 22, 42, 60, 54, 46, 58, 62, 126, 150, 98, 94, 106, 118, 198, 134, 142, 270, 158, 166, 276, 420, 250, 206, 214, 378, 348, 254, 262, 274, 278, 298, 302, 474, 486, 334, 346, 358, 594, 382, 840, 394, 398, 422, 446, 454, 458, 708, 478, 1050, 502, 1020
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
D. Bressoud, CNT.m Computational Number Theory Mathematica package.
|
|
EXAMPLE
|
For p=97: x = {97, 119, 153, 194, 195, 208, 224, 238, 260, 280, 288, 306, 312, 336, 360, 390, 420} is set of 17 solutions such that phi(x)+1=97.
|
|
MATHEMATICA
|
Table[Do[s=1+EulerPhi[n]; If[Equal[s, Prime[k]], Print[{n, s}]], {n, 1, 4*Prime[k]^2}], {k, 1, 100}]
Needs["CNT`"]; Table[Solve[EulerPhi[x] == Prime[n] - 1, x][[-1, -1, -1]], {n, 100}] (* T. D. Noe, Nov 07 2011 *)
|
|
CROSSREFS
|
Cf. A057826 (greatest number with totient 2n).
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|