login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A262503
a(n) = largest k such that A155043(k) = n.
16
0, 2, 6, 12, 18, 22, 30, 34, 42, 48, 60, 72, 84, 96, 108, 120, 132, 140, 112, 116, 126, 124, 130, 138, 150, 156, 168, 180, 176, 184, 192, 204, 216, 228, 240, 248, 264, 280, 250, 258, 270, 288, 296, 312, 306, 320, 328, 340, 352, 364, 372, 354, 358, 368, 384, 396, 420, 402, 414, 418, 432, 450, 468, 480, 504, 520, 540, 560, 572, 580, 594, 612, 610, 618, 622, 628, 648, 672, 592
OFFSET
0,2
COMMENTS
The first odd terms occur as a(121) = 1089, a(123) = 1093, a(349) = 3253, a(717) = 7581, a(807) = 8685, a(1225) = 13689, etc.
FORMULA
Other identities and observations. For all n >= 0:
A262502(n+2) > a(n). [Not rigorously proved, but empirical evidence and common sense agrees.]
MATHEMATICA
lim = 80; a[0] = 0; a[n_] := a[n] = 1 + a[n - DivisorSigma[0, n]]; t = Table[a@ n, {n, 0, 12 lim}]; Last@ Flatten@ Position[t, #] - 1 & /@ Range[0, lim] (* Uses the product of a limit and an arbitrary coefficient (12) based on observation of output for low values (n < 500). This might need to be adjusted for large n to give correct values of a(n). - Michael De Vlieger, Sep 29 2015 *) (* Note: one really should use a general safe limit, like A262502(n+2) I use in my Scheme-program. - Antti Karttunen, Sep 29 2015 *)
PROG
(PARI)
allocatemem(123456789);
uplim = 2162160; \\ = A002182(41).
v155043 = vector(uplim);
v155043[1] = 1; v155043[2] = 1;
for(i=3, uplim, v155043[i] = 1 + v155043[i-numdiv(i)]);
A155043 = n -> if(!n, n, v155043[n]);
uplim2 = 110880; \\ = A002182(30).
v262503 = vector(uplim2);
for(i=1, uplim, if(v155043[i] <= uplim2, v262503[v155043[i]] = i));
A262503 = n -> if(!n, n, v262503[n]);
for(n=0, uplim2, write("b262503.txt", n, " ", A262503(n)));
(Scheme)
(define (A262503 n) (let loop ((k (A262502 (+ 2 n)))) (if (= (A155043 k) n) k (loop (- k 1)))))
CROSSREFS
Cf. A261089 (gives the first occurrence of n in A155043).
Cf. A262507 (gives the number of times n occurs in A155043).
Sequence in context: A026229 A259934 A263269 * A263082 A043343 A066080
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 24 2015
STATUS
approved