login
A263082
a(n) = Max( A262503(k) : k=0,1,2,3,...,n ), where A262503(k) = largest x such that A155043(x) = k.
3
0, 2, 6, 12, 18, 22, 30, 34, 42, 48, 60, 72, 84, 96, 108, 120, 132, 140, 140, 140, 140, 140, 140, 140, 150, 156, 168, 180, 180, 184, 192, 204, 216, 228, 240, 248, 264, 280, 280, 280, 280, 288, 296, 312, 312, 320, 328, 340, 352, 364, 372, 372, 372, 372, 384, 396, 420, 420, 420, 420, 432, 450, 468, 480, 504, 520, 540, 560, 572, 580, 594, 612, 612, 618, 622, 628, 648, 672, 672, 672, 672, 672
OFFSET
0,2
COMMENTS
From position a(n)+1 onward only terms > n will occur in A155043.
LINKS
FORMULA
a(0) = 0; for n >= 1, a(n) = max(A262503(n),a(n-1)).
Other identities and observations:
For all n >= 0 and for any k > a(n): A155043(k) > n. [See the comment above.]
For all n >= 0: A155043(a(n)) <= n.
PROG
(Scheme, with memoization-macro definec)
(definec (A263082 n) (if (zero? n) n (max (A262503 n) (A263082 (- n 1)))))
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 09 2015
STATUS
approved