login
A263083
a(n) = largest k such that A049820(k) <= A262509(n).
3
119196, 119196, 119232, 119280, 119280, 119952, 119970, 120120, 120120, 120132, 120132, 120320, 120330, 120400, 120432, 120750, 120780, 120960, 120960, 120960, 120960, 120960, 121500, 121600, 121856, 122112, 122304, 122304, 122310, 122310, 122850, 123000, 123240, 123240, 123264, 123264, 123300, 123840, 24660720, 24660720, 24662484, 24662484, 24663804, 24665130, 24665130, 24665472, 24666048
OFFSET
1,1
COMMENTS
When a(n) > A262509(n), then a(n) is the "farthest immediate bypasser" of A262509(n) [the n-th "constriction point" in the tree generated by edge-relation A049820(child) = parent], bypassing it in the single A049820-step. In contrast, A263081(n) gives the farthest node (by necessity a leaf-node) which bypasses A262509(n) in multiple A049820-steps.
Sequence b(n) = A155043(A262509(n)) - A155043(a(n)) = A262508(n) - A155043(a(n)) gives the following terms: 395, 396, 354, 363, 364, 399, 390, 419, 422, 420, 421, 442, 430, 437, 460, 456, 498, 511, 512, 513, 515, 516, 506, 509, 533, 543, 564, 565, 557, 558, 591, 608, 612, 613, 614, 617, 617, 655, 3240, 3241, 3236, 3239, 3291, 3346, 3350, 3373, 3451, 3455, 2, 3598, 3637, 3605, 3674, 3688, 3689, 3748, 3749, 3792, 3793, 3794, 3800, 3803, 3858, 3843, 3902, 3947, 3985, 3986, ... which tells how many steps shorter trajectory there is to zero (using A049820) for those bypassers than for the constriction points themselves.
LINKS
FORMULA
a(n) = A262509(n)+A262908(n).
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Oct 11 2015
STATUS
approved