

A262507


a(n) = number of times n occurs in A155043.


15



1, 2, 3, 5, 4, 5, 6, 4, 4, 4, 8, 4, 4, 5, 8, 7, 7, 7, 7, 8, 5, 6, 6, 8, 10, 7, 8, 7, 7, 5, 5, 6, 6, 8, 6, 7, 7, 7, 4, 5, 5, 6, 6, 8, 7, 5, 5, 6, 7, 11, 5, 4, 5, 8, 12, 7, 9, 5, 8, 8, 9, 10, 14, 11, 12, 11, 9, 11, 13, 12, 12, 11, 11, 11, 12, 12, 10, 9, 9, 9, 8, 6, 10, 9, 10, 8, 7, 7, 8, 11, 10, 10, 12, 9, 7, 6, 5, 5, 5, 5, 4, 7, 8, 6, 7, 9, 7, 5, 11, 13, 13, 8, 10, 12, 13, 10, 12, 16, 9, 8, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

Records are: 1, 2, 3, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 26, 27, 31, 35, 39, 44, ... and they occur at positions: 0, 1, 2, 3, 6, 10, 24, 49, 54, 62, 117, 236, 445, 484, 892, 893, 1022, 1784, 1911, 1912, 1913, 20600, 50822, ...
a(n) gives the length of each row of irregular table A263265.


LINKS

Antti Karttunen, Table of n, a(n) for n = 0..110880


FORMULA

a(n) = Sum_{k=n..A262502(2+n)} [A155043(k) == n]. (Here [...] denotes the Iverson bracket, resulting 1 when A155043(k) is n and 0 otherwise.)
Other identities. For all n >= 0:
a(n) = A263279(n) + A263280(n).


PROG

(PARI)
allocatemem(123456789);
uplim = 2162160; \\ = A002182(41).
v155043 = vector(uplim);
v155043[1] = 1; v155043[2] = 1;
for(i=3, uplim, v155043[i] = 1 + v155043[inumdiv(i)]);
uplim2 = 110880; \\ = A002182(30).
v262507 = vector(uplim2);
for(i=1, uplim, if(v155043[i] <= uplim2, v262507[v155043[i]]++));
A262507 = n > if(!n, 1, v262507[n]);
for(n=0, uplim2, write("b262507.txt", n, " ", A262507(n)));
(Scheme)
(define (A262507 n) (add (lambda (k) (if (= (A155043 k) n) 1 0)) n (A262502 (+ 2 n))))
;; Auxiliary function add implements sum_{i=lowlim..uplim} intfun(i)
(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))


CROSSREFS

Cf. A000005, A060990, A155043, A262502, A262505, A263265, A263270, A263279, A263280.
Cf. A261089, A262503.
Cf. A262508 (positions of ones).
Cf. A263260 (partial sums).
Sequence in context: A267808 A239852 A263279 * A151679 A077664 A179475
Adjacent sequences: A262504 A262505 A262506 * A262508 A262509 A262510


KEYWORD

nonn


AUTHOR

Antti Karttunen, Sep 25 2015


STATUS

approved



