|
|
A262507
|
|
a(n) = number of times n occurs in A155043.
|
|
15
|
|
|
1, 2, 3, 5, 4, 5, 6, 4, 4, 4, 8, 4, 4, 5, 8, 7, 7, 7, 7, 8, 5, 6, 6, 8, 10, 7, 8, 7, 7, 5, 5, 6, 6, 8, 6, 7, 7, 7, 4, 5, 5, 6, 6, 8, 7, 5, 5, 6, 7, 11, 5, 4, 5, 8, 12, 7, 9, 5, 8, 8, 9, 10, 14, 11, 12, 11, 9, 11, 13, 12, 12, 11, 11, 11, 12, 12, 10, 9, 9, 9, 8, 6, 10, 9, 10, 8, 7, 7, 8, 11, 10, 10, 12, 9, 7, 6, 5, 5, 5, 5, 4, 7, 8, 6, 7, 9, 7, 5, 11, 13, 13, 8, 10, 12, 13, 10, 12, 16, 9, 8, 12
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
Records are: 1, 2, 3, 5, 6, 8, 10, 11, 12, 14, 16, 17, 19, 21, 22, 24, 25, 26, 27, 31, 35, 39, 44, ... and they occur at positions: 0, 1, 2, 3, 6, 10, 24, 49, 54, 62, 117, 236, 445, 484, 892, 893, 1022, 1784, 1911, 1912, 1913, 20600, 50822, ...
a(n) gives the length of each row of irregular table A263265.
|
|
LINKS
|
Antti Karttunen, Table of n, a(n) for n = 0..110880
|
|
FORMULA
|
a(n) = Sum_{k=n..A262502(2+n)} [A155043(k) == n]. (Here [...] denotes the Iverson bracket, resulting 1 when A155043(k) is n and 0 otherwise.)
Other identities. For all n >= 0:
a(n) = A263279(n) + A263280(n).
|
|
PROG
|
(PARI)
allocatemem(123456789);
uplim = 2162160; \\ = A002182(41).
v155043 = vector(uplim);
v155043[1] = 1; v155043[2] = 1;
for(i=3, uplim, v155043[i] = 1 + v155043[i-numdiv(i)]);
uplim2 = 110880; \\ = A002182(30).
v262507 = vector(uplim2);
for(i=1, uplim, if(v155043[i] <= uplim2, v262507[v155043[i]]++));
A262507 = n -> if(!n, 1, v262507[n]);
for(n=0, uplim2, write("b262507.txt", n, " ", A262507(n)));
(Scheme)
(define (A262507 n) (add (lambda (k) (if (= (A155043 k) n) 1 0)) n (A262502 (+ 2 n))))
;; Auxiliary function add implements sum_{i=lowlim..uplim} intfun(i)
(define (add intfun lowlim uplim) (let sumloop ((i lowlim) (res 0)) (cond ((> i uplim) res) (else (sumloop (1+ i) (+ res (intfun i)))))))
|
|
CROSSREFS
|
Cf. A000005, A060990, A155043, A262502, A262505, A263265, A263270, A263279, A263280.
Cf. A261089, A262503.
Cf. A262508 (positions of ones).
Cf. A263260 (partial sums).
Sequence in context: A267808 A239852 A263279 * A151679 A077664 A329402
Adjacent sequences: A262504 A262505 A262506 * A262508 A262509 A262510
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Antti Karttunen, Sep 25 2015
|
|
STATUS
|
approved
|
|
|
|