login
A263265
Irregular triangle T(n,k), n >= 0, k = 1 .. A262507(n), read by rows, where each row n lists in ascending order all integers x for which A155043(x) = n.
13
0, 1, 2, 3, 4, 6, 5, 8, 9, 10, 12, 7, 11, 14, 18, 13, 15, 16, 20, 22, 17, 24, 25, 26, 28, 30, 19, 21, 32, 34, 23, 38, 40, 42, 27, 44, 46, 48, 29, 36, 49, 50, 52, 54, 56, 60, 31, 33, 58, 72, 35, 62, 66, 84, 37, 39, 68, 70, 96, 41, 45, 74, 76, 78, 80, 104, 108, 43, 47, 81, 82, 88, 90, 120, 51, 83, 85, 86, 94, 128, 132, 53, 55, 87, 92, 102, 136, 140
OFFSET
0,3
FORMULA
Other identities. For all n >= 0:
A155043(a(n)) = A263270(n).
EXAMPLE
Rows 0 - 8 of the triangle:
0;
1, 2;
3, 4, 6;
5, 8, 9, 10, 12;
7, 11, 14, 18;
13, 15, 16, 20, 22;
17, 24, 25, 26, 28, 30;
19, 21, 32, 34;
23, 38, 40, 42;
Row n contains A262507(n) terms, the first of which is A261089(n) and the last of which is A262503(n). For all terms on row n, A155043(n) = n.
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(defineperm1 (A263265 n) (cond ((zero? n) n) ((= 1 (- (A263270 n) (A263270 (- n 1)))) (A261089 (A263270 n))) (else (let ((p (A263265 (- n 1))) (d (A263270 n))) (let loop ((k (+ p 1))) (if (= (A155043 k) d) k (loop (+ k 1))))))))
CROSSREFS
Inverse: A263266.
Cf. A261089 (left edge), A262503 (right edge), A262507 (number of terms on each row).
Cf. A263279 (gives the positions of terms of A259934 on each row), A263280 (and their distance from the right edge).
Cf. also permutations A263267 & A263268 and A263255 & A263256.
Differs from A263267 for the first time at n=31, where a(31) = 38, while A263267(31) = 40.
Sequence in context: A116538 A377362 A084287 * A263267 A257471 A369136
KEYWORD
nonn,tabf
AUTHOR
Antti Karttunen, Nov 24 2015
STATUS
approved