login
A066083
Number of supersolvable groups of order n.
2
1, 1, 1, 2, 1, 2, 1, 5, 2, 2, 1, 4, 1, 2, 1, 14, 1, 5, 1, 5, 2, 2, 1, 12, 2, 2, 5, 4, 1, 4, 1, 51, 1, 2, 1, 11, 1, 2, 2, 14, 1, 6, 1, 4, 2, 2, 1, 42, 2, 5, 1, 5, 1, 15, 2, 12, 2, 2, 1, 11, 1, 2, 4, 267, 1, 4, 1, 5, 1, 4, 1, 37, 1, 2, 2, 4, 1, 6, 1, 51
OFFSET
1,4
COMMENTS
A finite group is supersolvable if it has a normal series with cyclic factors. Huppert showed that a finite group is supersolvable iff the index of any maximal subgroup is prime.
CROSSREFS
Sequence in context: A332489 A119569 A318475 * A128644 A201733 A000001
KEYWORD
nonn,nice
AUTHOR
Reiner Martin, Dec 29 2001
STATUS
approved