The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A066085 Orders of non-supersolvable groups. 5
 12, 24, 36, 48, 56, 60, 72, 75, 80, 84, 96, 108, 112, 120, 132, 144, 150, 156, 160, 168, 180, 192, 196, 200, 204, 216, 224, 225, 228, 240, 252, 264, 276, 280, 288, 294, 300, 312, 320, 324, 336, 348, 351, 360, 363, 372, 375, 384, 392, 396, 400, 405, 408, 420 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS A finite group is supersolvable if it has a normal series with cyclic factors. Huppert showed that a finite group is supersolvable iff the index of any maximal subgroup is prime. All multiples of non-supersolvable orders are non-supersolvable orders. - Des MacHale, Dec 22 2003 LINKS B. Huppert, Über das Produkt von paarweise vertauschbaren zyklischen Gruppen, Math. Z. 58 (1954). Des MacHale and J. Manning, Converse Lagrange Theorem Orders and Supersolvable Orders, Journal of Integer Sequences, 2016, Vol. 19, #16.8.7. EXAMPLE a(1)=12 is in the sequence since the alternating group on 4 elements is the smallest group which is not supersolvable. CROSSREFS Cf. A000001, A066083, A340511. For primitive terms see A340517. Sequence in context: A059691 A097060 A336657 * A340511 A094529 A270571 Adjacent sequences:  A066082 A066083 A066084 * A066086 A066087 A066088 KEYWORD nonn AUTHOR Reiner Martin (reinermartin(AT)hotmail.com), Dec 29 2001 EXTENSIONS More terms from Des MacHale, Dec 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 07:13 EDT 2022. Contains 356078 sequences. (Running on oeis4.)