login
A380412
First term of the n-th differences of the strict partition numbers. Inverse zero-based binomial transform of A000009.
0
1, 0, 0, 1, -3, 7, -14, 25, -41, 64, -100, 165, -294, 550, -1023, 1795, -2823, 3658, -2882, -2873, 20435, -62185, 148863, -314008, 613957, -1155794, 2175823, -4244026, 8753538, -19006490, 42471787, -95234575, 210395407, -453413866, 949508390, -1931939460
OFFSET
0,5
COMMENTS
Up to sign, same as A293467.
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) binomial(n,k) A000041(k).
MATHEMATICA
nn=10; Table[First[Differences[PartitionsQ/@Range[0, nn], n]], {n, 0, nn}]
CROSSREFS
The version for non-strict partitions is A281425, row n=0 of A175804.
Column n=0 of A378622.
A000009 counts strict integer partitions, differences A087897, A378972.
A266232 gives zero-based binomial transform of A000009, differences A129519.
Sequence in context: A089240 A057524 A293467 * A051170 A011795 A265252
KEYWORD
sign,new
AUTHOR
Gus Wiseman, Feb 03 2025
STATUS
approved