login
A380176
Number of pairs of adjacent equal parts in all gap-free compositions of n.
0
0, 0, 1, 2, 6, 12, 26, 56, 124, 266, 563, 1204, 2573, 5468, 11559, 24370, 51281, 107720, 225867, 472660, 987378, 2059180, 4287932, 8916624, 18517398, 38406486, 79563118, 164636582, 340308519, 702713844, 1449664783, 2987870476, 6152930738, 12660419370, 26030245642
OFFSET
0,4
COMMENTS
An integer composition is gap-free if its set of parts covers an interval.
FORMULA
G.f.: B(x) = d/dz Sum_{j>0} Sum_{k>=j} C({j..k},x,z)|_{z=1} where C({s},x,z) = Sum_{i in {s}} ( C({s}-{i},x,z)*(x^i)/(1-(x^i)*(z-1)) )/(1 - Sum_{i in {s}} (x^i)/(1-(x^i)*(z-1))) with C({},x,z) = 1.
EXAMPLE
The gap-free compositions of n = 4 are: (4), (2,2), (1,1,2), (1,2,1), (2,1,1), and (1,1,1,1); having a total of 6 pairs of equal adjacent parts giving a(4) = 6.
PROG
(PARI)
C_xz(s, N) = {my(x='x+O('x^N), g=if(#s <1, 1, sum(i=1, #s, C_xz(s[^i], N+1) * x^(s[i])/(1-(x^(s[i]))*(z-1)) )/(1-sum(i=1, #s, x^(s[i])/(1-(x^(s[i]))*(z-1)))))); return(g)}
B_xz(N) = {my(x='x+O('x^N), j=1, h=0); while((j*(j+1))/2 <= N, for(k=0, N, h += C_xz([(1+k)..(j+k)], N+1)); j+=1); h}
P_xz(N) = Pol(B_xz(N), {x})
B_x(N) = {my(cx = deriv(P_xz(N), z), z=1); Vecrev(eval(cx))}
B_x(20)
KEYWORD
nonn,new
AUTHOR
John Tyler Rascoe, Jan 14 2025
STATUS
approved