login
A380179
Triangle T(n,k) read by rows: T(n,k) = -binomial(n+1,k) + Sum_{i=0..k} Sum_{j=0..i+1} (i+1)^(n-i+j)*(-1)^(k-i)/(j!*(k-i)!) for 0 <= k <= n.
1
1, 1, 1, 1, 5, 1, 1, 14, 14, 1, 1, 33, 68, 30, 1, 1, 72, 257, 218, 55, 1, 1, 151, 873, 1189, 553, 91, 1, 1, 310, 2812, 5734, 4094, 1204, 140, 1, 1, 629, 8802, 25916, 26484, 11598, 2352, 204, 1, 1, 1268, 27107, 112718, 158840, 96702, 28566, 4236, 285, 1
OFFSET
0,5
FORMULA
Conjecture: A347420(n) = 2^n + Sum_{k=1..n-1} T(n-1, k) for n >= 0.
EXAMPLE
Triangle begins:
1;
1, 1;
1, 5, 1;
1, 14, 14, 1;
1, 33, 68, 30, 1;
1, 72, 257, 218, 55, 1;
1, 151, 873, 1189, 553, 91, 1;
1, 310, 2812, 5734, 4094, 1204, 140, 1;
1, 629, 8802, 25916, 26484, 11598, 2352, 204, 1;
1, 1268, 27107, 112718, 158840, 96702, 28566, 4236, 285, 1;
PROG
(PARI) T(n, k) = if(k >= 0 && n >= k, -binomial(n+1, k) + sum(i=0, k, sum(j=0, i+1, (i+1)^(n-i+j)*(-1)^(k-i)/(j!*(k-i)!))))
CROSSREFS
Cf. A347420.
Sequence in context: A278880 A111910 A181143 * A144438 A157207 A008957
KEYWORD
nonn,tabl,new
AUTHOR
Mikhail Kurkov, Jan 14 2025
STATUS
approved