login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379921
Partial alternating sums of the sigma_2 function: a(n) = Sum_{k=1..n} (-1)^(k+1) * sigma_2(k).
2
1, -4, 6, -15, 11, -39, 11, -74, 17, -113, 9, -201, -31, -281, -21, -362, -72, -527, -165, -711, -211, -821, -291, -1141, -490, -1340, -520, -1570, -728, -2028, -1066, -2431, -1211, -2661, -1361, -3272, -1902, -3712, -2012, -4222, -2540, -5040, -3190, -5752, -3386
OFFSET
1,2
LINKS
FORMULA
a(n) ~ -zeta(3) * n^3 / 24.
In general, for m >= 2, Sum_{k=1..n} (-1)^(k+1) * sigma_m(k) ~ -zeta(m+1) * n^(m+1) / ((m+1)*2^(m+1)).
MATHEMATICA
Accumulate[Table[(-1)^(k+1) * DivisorSigma[2, k], {k, 1, 100}]]
PROG
(PARI) list(lim) = {my(s = 0); for(k = 1, lim, s += (-1)^(k+1) * sigma(k, 2); print1(s, ", ")); }
CROSSREFS
Sequence in context: A365074 A284123 A135093 * A141667 A048753 A055719
KEYWORD
sign,easy
AUTHOR
Amiram Eldar, Jan 06 2025
STATUS
approved