login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135093
Least composite number k for each possible difference gpf(k)-lpf(k).
3
4, 6, 15, 10, 21, 14, 55, 33, 22, 39, 26, 85, 51, 34, 57, 38, 115, 69, 46, 203, 145, 87, 58, 93, 62, 259, 185, 111, 74, 205, 123, 82, 129, 86, 235, 141, 94, 371, 265, 159, 106, 413, 295, 177, 118, 183, 122, 469, 335, 201, 134, 355, 213, 142, 219, 146, 553, 395, 237
OFFSET
0,1
COMMENTS
Clearly all terms are semiprimes. a(0)=prime(1)^2=4. For n>=1, a(n)=k, a squarefree semiprime, where gpf(k)-lpf(k)=A006530(k)-A020639(k)=A030173(k).
For n > 0: first occurrences of A030173(n) in A046665. - Reinhard Zumkeller, Jul 03 2015
LINKS
EXAMPLE
a(3)=2*5=10 because 5-2=3=A030173(3), where the latter terms are ordered by the increasing possible differences between two distinct primes and no smaller composite number has a difference of 3 between its least and greatest prime factors.
PROG
(Haskell)
import Data.List (elemIndex); import Data.Maybe (fromJust)
a135093 0 = 4
a135093 n = (+ 1) $ fromJust $ (`elemIndex` a046665_list) $ a030173 n
-- Reinhard Zumkeller, Jul 03 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
Rick L. Shepherd, Nov 18 2007
STATUS
approved