login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A135090
Array read by antidiagonals: T(n, k) = Knuth's Fibonacci (or circle) product of n and k ("n o k"), n >= 0, k >= 0.
4
0, 0, 0, 0, 3, 0, 0, 5, 5, 0, 0, 8, 8, 8, 0, 0, 11, 13, 13, 11, 0, 0, 13, 18, 21, 18, 13, 0, 0, 16, 21, 29, 29, 21, 16, 0, 0, 18, 26, 34, 40, 34, 26, 18, 0, 0, 21, 29, 42, 47, 47, 42, 29, 21, 0, 0, 24, 34, 47, 58, 55, 58, 47, 34, 24, 0, 0, 26, 39, 55, 65, 68, 68, 65, 55, 39, 26, 0, 0, 29, 42, 63, 76, 76, 84, 76, 76, 63, 42, 29, 0, 0, 32, 47
OFFSET
0,5
COMMENTS
This is a variant of A101330. See that entry for much more information.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11324 (first 150 antidiagonals, flattened).
FORMULA
T(n, k) = 3*n*k - n*h(k) - k*h(n) where h(n) = A060144(n + 1). - Peter Luschny, Mar 21 2024
EXAMPLE
Array begins:
n\k | 0 1 2 3 4 5 6 7 8 9 ...
----+------------------------------------------------
0 | 0 0 0 0 0 0 0 0 0 0 ...
1 | 0 3 5 8 11 13 16 18 21 24 ...
2 | 0 5 8 13 18 21 26 29 34 39 ...
3 | 0 8 13 21 29 34 42 47 55 63 ...
4 | 0 11 18 29 40 47 58 65 76 87 ...
5 | 0 13 21 34 47 55 68 76 89 102 ...
6 | 0 16 26 42 58 68 84 94 110 126 ...
7 | 0 18 29 47 65 76 94 105 123 141 ...
8 | 0 21 34 55 76 89 110 123 144 165 ...
9 | 0 24 39 63 87 102 126 141 165 189 ...
...
MAPLE
h := n -> floor(2*(n + 1)/(sqrt(5) + 3)): # A060144(n+1)
T := (n, k) -> 3*n*k - n*h(k) - k*h(n):
seq(print(seq(T(n, k), k = 0..9)), n = 0..7); # Peter Luschny, Mar 21 2024
MATHEMATICA
A135090[n_, k_] := 3*n*k - n*Floor[(k + 1) / GoldenRatio^2] - k*Floor[(n + 1) / GoldenRatio^2];
Table[A135090[n-k, k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Mar 21 2024 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 17 2008
STATUS
approved