OFFSET
0,5
COMMENTS
This is a variant of A101330. See that entry for much more information.
LINKS
Paolo Xausa, Table of n, a(n) for n = 0..11324 (first 150 antidiagonals, flattened).
FORMULA
T(n, k) = 3*n*k - n*h(k) - k*h(n) where h(n) = A060144(n + 1). - Peter Luschny, Mar 21 2024
EXAMPLE
Array begins:
n\k | 0 1 2 3 4 5 6 7 8 9 ...
----+------------------------------------------------
0 | 0 0 0 0 0 0 0 0 0 0 ...
1 | 0 3 5 8 11 13 16 18 21 24 ...
2 | 0 5 8 13 18 21 26 29 34 39 ...
3 | 0 8 13 21 29 34 42 47 55 63 ...
4 | 0 11 18 29 40 47 58 65 76 87 ...
5 | 0 13 21 34 47 55 68 76 89 102 ...
6 | 0 16 26 42 58 68 84 94 110 126 ...
7 | 0 18 29 47 65 76 94 105 123 141 ...
8 | 0 21 34 55 76 89 110 123 144 165 ...
9 | 0 24 39 63 87 102 126 141 165 189 ...
...
MAPLE
h := n -> floor(2*(n + 1)/(sqrt(5) + 3)): # A060144(n+1)
T := (n, k) -> 3*n*k - n*h(k) - k*h(n):
seq(print(seq(T(n, k), k = 0..9)), n = 0..7); # Peter Luschny, Mar 21 2024
MATHEMATICA
A135090[n_, k_] := 3*n*k - n*Floor[(k + 1) / GoldenRatio^2] - k*Floor[(n + 1) / GoldenRatio^2];
Table[A135090[n-k, k], {n, 0, 15}, {k, 0, n}] (* Paolo Xausa, Mar 21 2024 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, May 17 2008
STATUS
approved