OFFSET
9,2
COMMENTS
For n < 9, there are no such curves.
There are precisely 7 primes in this sequence, namely
a(10)=2, a(11)=7, a(12)=13, a(14)=67, a(15)=113, a(36)=39041, a(63)=907237.
FORMULA
G.f.: x^9*(1 + x + 3*x^2 + 2*x^3 + 12*x^4 + 14*x^5 - 3*x^6 - x^7 + 7*x^8)/((1 - x)*(1 - x^2)^2*(1 - x^3)^2*(1 - x^6)) \\ David Broadhurst, Jan 17 2025
EXAMPLE
For n=9, there is a unique irreducible conic that contains 6 points in a cyclic order n torsion subgroup of an elliptic curve, and for n=11 there are 7 such conics.
PROG
(Magma)
sq:=[];
for NN in [9..30] do
G:=Integers(NN);
SG:={q: q in G};
QNT:=Subsets(SG, 5);
QNT:={q join {-(&+ q)} : q in QNT | not -(&+ q) in q};
TRS:=Subsets(SG, 3);
TRS:={q : q in TRS|&+q eq 0};
QNT:={q :q in QNT| not #{u : u in TRS| u subset q} ge 1};
Append(~sq, #QNT);
end for;
sq;
(PARI) {a(n)=[(n-6)*(n^4-19*n^3+121*n^2-384*n+840), (n-1)*(n-4)*(n-5)*(n-7)*(n-8), (n-2)*(n-4)*(n-8)*(n^2-11*n+25), (n-3)*(n^4-22*n^3+169*n^2-588*n+1200)][gcd(n, 6)%6+1]/6!; } \\ David Broadhurst, Jan 17 2025
CROSSREFS
KEYWORD
nonn
AUTHOR
Xavier Roulleau, Jan 17 2025
STATUS
approved