login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379616
Denominators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).
3
1, 3, 12, 60, 20, 30, 120, 40, 40, 360, 360, 72, 504, 126, 504, 1512, 1512, 7560, 1512, 7560, 30240, 30240, 30240, 30240, 393120, 393120, 393120, 393120, 393120, 393120, 196560, 28080, 14040, 4680, 9360, 46800, 889200, 889200, 6224400, 6224400, 889200, 1778400
OFFSET
1,2
LINKS
V. Sitaramaiah and M. V. Subbarao, Asymptotic formulae for sums of reciprocals of some multiplicative functions, J. Indian Math. Soc., Vol. 57 (1991), pp. 153-167.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.13, p. 34.
FORMULA
a(n) = denominator(Sum_{k=1..n} 1/A188999(k)).
MATHEMATICA
f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/bsigma[n], {n, 1, 50}]]]
PROG
(PARI) bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2))); }
list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / bsigma(k); print1(denominator(s), ", "))};
CROSSREFS
Cf. A188999, A307159, A370904, A379615 (numerators), A379618.
Sequence in context: A020102 A277179 A201013 * A379514 A379618 A379516
KEYWORD
nonn,easy,frac,new
AUTHOR
Amiram Eldar, Dec 27 2024
STATUS
approved