login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A379617
Numerators of the partial alternating sums of the reciprocals of the sum of bi-unitary divisors function (A188999).
3
1, 2, 11, 43, 53, 4, 37, 103, 23, 65, 71, 337, 2539, 1217, 2539, 7337, 7757, 1501, 7883, 7631, 31469, 30629, 31889, 6277, 84625, 82753, 423593, 82753, 426869, 421409, 216847, 213727, 108911, 11899, 24253, 119081, 2317139, 760853, 773203, 6889667, 7037867, 13946059
OFFSET
1,2
LINKS
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.13, p. 34.
FORMULA
a(n) = numerator(Sum_{k=1..n} (-1)^(k+1)/A188999(k)).
a(n)/A379618(n) = A * log(n) + B + O(log(n)^(14/3) * log(log(n))^(4/3) * n^c), where c = log(9/10)/log(2) = -0.152003..., and A and B are constants.
EXAMPLE
Fractions begin with 1, 2/3, 11/12, 43/60, 53/60, 4/5, 37/40, 103/120, 23/24, 65/72, 71/72, 337/360, ...
MATHEMATICA
f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[(-1)^(n+1)/bsigma[n], {n, 1, 50}]]]
PROG
(PARI) bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2))); }
list(nmax) = {my(s = 0); for(k = 1, nmax, s += (-1)^(k+1) / bsigma(k); print1(numerator(s), ", "))};
CROSSREFS
Cf. A188999, A307159, A370904, A379615, A379618 (denominators).
Sequence in context: A219100 A140322 A027247 * A379515 A141190 A048500
KEYWORD
nonn,easy,frac,new
AUTHOR
Amiram Eldar, Dec 27 2024
STATUS
approved