login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A307159
Partial sums of the bi-unitary divisors sum function: Sum_{k=1..n} bsigma(k), where bsigma is A188999.
5
1, 4, 8, 13, 19, 31, 39, 54, 64, 82, 94, 114, 128, 152, 176, 203, 221, 251, 271, 301, 333, 369, 393, 453, 479, 521, 561, 601, 631, 703, 735, 798, 846, 900, 948, 998, 1036, 1096, 1152, 1242, 1284, 1380, 1424, 1484, 1544, 1616, 1664, 1772, 1822, 1900, 1972, 2042
OFFSET
1,2
REFERENCES
D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.
LINKS
László Tóth, Alternating sums concerning multiplicative arithmetic functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1, section 4.13.
FORMULA
a(n) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6) (A307160).
MATHEMATICA
fun[p_, e_] := If[OddQ[e], (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); Accumulate[Array[bsigma, 60]]
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Mar 27 2019
STATUS
approved