login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of the bi-unitary divisors sum function: Sum_{k=1..n} bsigma(k), where bsigma is A188999.
5

%I #9 Jul 23 2019 07:54:07

%S 1,4,8,13,19,31,39,54,64,82,94,114,128,152,176,203,221,251,271,301,

%T 333,369,393,453,479,521,561,601,631,703,735,798,846,900,948,998,1036,

%U 1096,1152,1242,1284,1380,1424,1484,1544,1616,1664,1772,1822,1900,1972,2042

%N Partial sums of the bi-unitary divisors sum function: Sum_{k=1..n} bsigma(k), where bsigma is A188999.

%D D. Suryanarayana and M. V. Subbarao, Arithmetical functions associated with the biunitary k-ary divisors of an integer, Indian J. Math., Vol. 22 (1980), pp. 281-298.

%H Amiram Eldar, <a href="/A307159/b307159.txt">Table of n, a(n) for n = 1..10000</a>

%H László Tóth, <a href="http://emis.ams.org/journals/JIS/VOL20/Toth/toth25.html">Alternating sums concerning multiplicative arithmetic functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1, section 4.13.

%F a(n) ~ c * n^2, where c = (zeta(2)*zeta(3)/2) * Product_{p}(1 - 2/p^3 + 1/p^4 + 1/p^5 - 1/p^6) (A307160).

%t fun[p_,e_] := If[OddQ[e],(p^(e+1)-1)/(p-1),(p^(e+1)-1)/(p-1)-p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ (fun @@@ FactorInteger[n]); Accumulate[Array[bsigma, 60]]

%Y Cf. A024916, A064609, A188999, A306069, A307042, A307160.

%K nonn

%O 1,2

%A _Amiram Eldar_, Mar 27 2019