login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A379615
Numerators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).
3
1, 4, 19, 107, 39, 61, 259, 89, 93, 857, 887, 181, 1303, 331, 1345, 4091, 4175, 21127, 4301, 21757, 87973, 88813, 90073, 90577, 1192621, 1201981, 1211809, 1221637, 1234741, 1240201, 626243, 89909, 45247, 15169, 30533, 153601, 2941819, 2956639, 20807623, 20876783
OFFSET
1,2
LINKS
V. Sitaramaiah and M. V. Subbarao, Asymptotic formulae for sums of reciprocals of some multiplicative functions, J. Indian Math. Soc., Vol. 57 (1991), pp. 153-167.
László Tóth, Alternating Sums Concerning Multiplicative Arithmetic Functions, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.13, p. 34.
FORMULA
a(n) = numerator(Sum_{k=1..n} 1/A188999(k)).
a(n)/A379616(n) = A * log(n) + B + O(log(n)^(14/3) * log(log(n))^(4/3) / n), where A and B are constants.
EXAMPLE
Fractions begin with 1, 4/3, 19/12, 107/60, 39/20, 61/30, 259/120, 89/40, 93/40, 857/360, 887/360, 181/72, ...
MATHEMATICA
f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Numerator[Accumulate[Table[1/bsigma[n], {n, 1, 50}]]]
PROG
(PARI) bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2))); }
list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / bsigma(k); print1(numerator(s), ", "))};
CROSSREFS
Cf. A188999, A307159, A370904, A379616 (denominators), A379617.
Sequence in context: A369109 A082030 A348802 * A379513 A052751 A367284
KEYWORD
nonn,easy,frac
AUTHOR
Amiram Eldar, Dec 27 2024
STATUS
approved