login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A201013 Triangular array read by rows: T(n,k) is the number of 2-regular labeled graphs on n nodes that have exactly k connected components (cycles); n>=3, 1<=k<=floor(n/3). 1
1, 3, 12, 60, 10, 360, 105, 2520, 987, 20160, 9576, 280, 181440, 99144, 6300, 1814400, 1104840, 107415, 19958400, 13262040, 1708245, 15400, 239500800, 171119520, 27042444, 600600, 3113510400, 2366076960, 437729292, 16186170, 43589145600, 34941291840, 7335055728, 382056675, 1401400 (list; graph; refs; listen; history; text; internal format)
OFFSET

3,2

COMMENTS

A 2-regular labeled graph is a simple labeled graph such that every vertex has degree 2.

LINKS

Alois P. Heinz, Rows n = 3..170, flattened

FORMULA

E.g.f.: exp(-xy/2-x^2y/4)/(1-x)^(y/2).

T(n,1) = (n-1)!/2, T(n,k) = Sum_{j=3..n-3} C(n-1,j-1)*T(j,1)*T(n-j,k-1) for k>1. - Alois P. Heinz, Nov 25 2011

Sum_{k=1..floor(n/3)} T(n,k)*2^k = A038205(n) the number of permutations with minimum cycle size of 3. - Geoffrey Critzer, Nov 05 2012

EXAMPLE

1;

3;

12;

60,     10;

360,    105;

2520,   987;

20160,  9576,    280;

181440, 99144,   6300;

MAPLE

T:= proc(n, k) option remember; `if`(k=1, (n-1)!/2,

      add(binomial(n-1, j-1) *T(j, 1) *T(n-j, k-1), j=3..n-3))

    end:

seq(seq(T(n, k), k=1..n/3), n=3..14); # Alois P. Heinz, Nov 25 2011

MATHEMATICA

f[list_]:=Select[list, #>0&]; Flatten[Drop[Map[f, a = Log[1/(1 - x)]/2 - x/2 - x^2/4; Range[0, 20]! CoefficientList[Series[Exp[y a], {x, 0, 20}], {x, y}]], 3]]

CROSSREFS

Cf. A001205 (row sums), A001710(n-1) (first row).

Sequence in context: A122752 A020102 A277179 * A065080 A114419 A090830

Adjacent sequences:  A201010 A201011 A201012 * A201014 A201015 A201016

KEYWORD

nonn,tabf

AUTHOR

Geoffrey Critzer, Nov 25 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 10 00:05 EDT 2020. Contains 333392 sequences. (Running on oeis4.)