login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Denominators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).
3

%I #7 Dec 28 2024 09:11:30

%S 1,3,12,60,20,30,120,40,40,360,360,72,504,126,504,1512,1512,7560,1512,

%T 7560,30240,30240,30240,30240,393120,393120,393120,393120,393120,

%U 393120,196560,28080,14040,4680,9360,46800,889200,889200,6224400,6224400,889200,1778400

%N Denominators of the partial sums of the reciprocals of the sum of bi-unitary divisors function (A188999).

%H Amiram Eldar, <a href="/A379616/b379616.txt">Table of n, a(n) for n = 1..1000</a>

%H V. Sitaramaiah and M. V. Subbarao, <a href="https://informaticsjournals.co.in/index.php/jims/article/view/21936">Asymptotic formulae for sums of reciprocals of some multiplicative functions</a>, J. Indian Math. Soc., Vol. 57 (1991), pp. 153-167.

%H László Tóth, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL20/Toth/toth25.html">Alternating Sums Concerning Multiplicative Arithmetic Functions</a>, Journal of Integer Sequences, Vol. 20 (2017), Article 17.2.1. See section 4.13, p. 34.

%F a(n) = denominator(Sum_{k=1..n} 1/A188999(k)).

%t f[p_, e_] := (p^(e+1) - 1)/(p - 1) - If[OddQ[e], 0, p^(e/2)]; bsigma[1] = 1; bsigma[n_] := Times @@ f @@@ FactorInteger[n]; Denominator[Accumulate[Table[1/bsigma[n], {n, 1, 50}]]]

%o (PARI) bsigma(n) = {my(f = factor(n)); prod(i = 1, #f~, (f[i, 1]^(f[i, 2]+1) - 1)/(f[i, 1] - 1) - if(!(f[i, 2] % 2), f[i, 1]^(f[i, 2]/2)));}

%o list(nmax) = {my(s = 0); for(k = 1, nmax, s += 1 / bsigma(k); print1(denominator(s), ", "))};

%Y Cf. A188999, A307159, A370904, A379615 (numerators), A379618.

%K nonn,easy,frac,new

%O 1,2

%A _Amiram Eldar_, Dec 27 2024