login
A377976
Expansion of the 48th root of the series 2*E_2(x) - E_4(x), where E_2(x) and E_4(x) are the Eisenstein series of weight 2 and 4.
4
1, -6, -894, -174420, -38431614, -9048710040, -2221653118116, -561444889080960, -144914324838755910, -38011797621225586602, -10098281618881696696392, -2710458654395655881518356, -733711171629600485187568404, -200033609249999737396399900920, -54867682197669353983111639906656
OFFSET
0,2
COMMENTS
Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_2(x) lies in P(4) and E_4(x) lies in P(8) (Heninger et al.).
We claim that the series 2*E_2(x) - E_4(x) belongs to P(48).
Proof.
E_2(x) = 1 - 24*Sum_{n >= 1} sigma_1(n)*x^n.
E_4(x) = 1 + 240*Sum_{n >= 1} sigma_3(n)*x^n.
Hence,
2*E_2(x) - E_4(x) = 1 - (288)*Sum_{n >= 1} ((1/6)*sigma_1(n) + (5/6)*sigma_3(n))*x^n belongs to the set R, since the polynomial (1/6)*k + (5/6)*k^3 has integer values for integer k. See A004068.
Hence, 2*E_2(x) - E_4(x) == 1 (mod 288) == 1 (mod (2^5)*(3^2)).
It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_2(x) - E_4(x) belongs to P((2^4)*3) = P(48). End Proof.
In a similar way we find that the series 3*E_2(x) - E_6(x) - 1 belongs to P(72) and the three series 3*E_4(x) - 2*E_6(x), 5*E_4(x) - 2*E_10(x) - 2 and 5*E_6(x) - 3*E_10(x) - 1 belong to P(288).
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
MAPLE
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(2) - E(4))^(1/48), q = 0, n), n = 0..20);
CROSSREFS
Cf. A004068, A006352 (E_2), A004009 (E_4), A108091 ((E_4)^1/8), A289392 ((E_2)^(1/4)), A341871 - A341875, A377973, A377974, A377975, A377977.
Sequence in context: A279304 A180992 A229629 * A137801 A076667 A000652
KEYWORD
sign,easy
AUTHOR
Peter Bala, Nov 14 2024
STATUS
approved