login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377976
Expansion of the 48th root of the series 2*E_2(x) - E_4(x), where E_2(x) and E_4(x) are the Eisenstein series of weight 2 and 4.
4
1, -6, -894, -174420, -38431614, -9048710040, -2221653118116, -561444889080960, -144914324838755910, -38011797621225586602, -10098281618881696696392, -2710458654395655881518356, -733711171629600485187568404, -200033609249999737396399900920, -54867682197669353983111639906656
OFFSET
0,2
COMMENTS
Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_2(x) lies in P(4) and E_4(x) lies in P(8) (Heninger et al.).
We claim that the series 2*E_2(x) - E_4(x) belongs to P(48).
Proof.
E_2(x) = 1 - 24*Sum_{n >= 1} sigma_1(n)*x^n.
E_4(x) = 1 + 240*Sum_{n >= 1} sigma_3(n)*x^n.
Hence,
2*E_2(x) - E_4(x) = 1 - (288)*Sum_{n >= 1} ((1/6)*sigma_1(n) + (5/6)*sigma_3(n))*x^n belongs to the set R, since the polynomial (1/6)*k + (5/6)*k^3 has integer values for integer k. See A004068.
Hence, 2*E_2(x) - E_4(x) == 1 (mod 288) == 1 (mod (2^5)*(3^2)).
It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_2(x) - E_4(x) belongs to P((2^4)*3) = P(48). End Proof.
In a similar way we find that the series 3*E_2(x) - E_6(x) - 1 belongs to P(72) and the three series 3*E_4(x) - 2*E_6(x), 5*E_4(x) - 2*E_10(x) - 2 and 5*E_6(x) - 3*E_10(x) - 1 belong to P(288).
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
MAPLE
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(2) - E(4))^(1/48), q = 0, n), n = 0..20);
CROSSREFS
Cf. A004068, A006352 (E_2), A004009 (E_4), A108091 ((E_4)^1/8), A289392 ((E_2)^(1/4)), A341871 - A341875, A377973, A377974, A377975, A377977.
Sequence in context: A279304 A180992 A229629 * A137801 A076667 A000652
KEYWORD
sign,easy
AUTHOR
Peter Bala, Nov 14 2024
STATUS
approved