login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A341875 Coefficients of the series whose 24th power equals E_2(x)*E_4(x)/E_6(x), where E_2(x), E_4(x) and E_6(x) are the Eisenstein series A006352, A004009 and A013973. 3
1, 30, 5310, 2453220, 910100190, 409796742600, 181276113779460, 84362079365838960, 39636500385830239350, 18986938020443181757410, 9186944625290601368703000, 4491611148118819794144792660 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Since E_2(x)*E_4(x)/E_6(x) == 1 - 24*Sum_{k >= 1} (k - 10*k^3 - 21*k^5)*x^k/(1 - x^k) (mod 144), and since the integer k - 10*k^3 - 21*k^5 is always divisible by 6 it follows that E_2(x)*E_4(x)/E_6(x) == 1 (mod 144). It follows from Heninger et al., p. 3, Corollary 2, that the series expansion of (E_2(x)*E_4(x)/E_6(x))^(1/24) = 1 + 30*x + 5310*x^2 + 2453220*x^3 + 910100190*x^4 + ... has integer coefficients.

LINKS

Table of n, a(n) for n=0..11.

N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.

Wikipedia, Eisenstein series

FORMULA

a(n) ~ c * exp(2*Pi*n) / n^(23/24), where c = 0.0431061156115657949750305669836959595841497962033916083447436... - Vaclav Kotesovec, Mar 08 2021

MAPLE

E(2, x) := 1 -  24*add(k*x^k/(1-x^k),   k = 1..20):

E(4, x) := 1 + 240*add(k^3*x^k/(1-x^k), k = 1..20):

E(6, x) := 1 - 504*add(k^5*x^k/(1-x^k), k = 1..20):

with(gfun): series((E(2, x)*E(4, x)/E(6, x))^(1/24), x, 20):

seriestolist(%);

CROSSREFS

Cf. A006352, A004009, A013973, A341871 - A341874.

Sequence in context: A196466 A159401 A288033 * A204975 A204702 A206647

Adjacent sequences:  A341872 A341873 A341874 * A341876 A341877 A341878

KEYWORD

nonn,easy

AUTHOR

Peter Bala, Feb 23 2021

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 22 16:15 EDT 2021. Contains 348174 sequences. (Running on oeis4.)