login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377973
Expansion of the 96th root of the series 2*E_2(x) - E_2(x)^2, where E_2 is the Eisenstein series of weight 2.
5
1, 0, -6, -36, -1812, -20748, -773340, -12237456, -386587650, -7368446268, -211914644940, -4517757977820, -123221458979940, -2814502962357420, -74551748141034552, -1778129476480366320, -46377354051910716180, -1137191336376638407704, -29438532048777299115090, -735051729258136807204140
OFFSET
0,3
COMMENTS
Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_2(x) lies in P(4) (Heninger et al.). Hence E_2(x)^2 lies in P(8).
We claim that the series 2*E_2(x) - E_2(x)^2 belongs to P(96).
Proof.
E_2(x) = 1 - 24*Sum_{n >= 1} sigma_1(n)*x^n.
Hence,
2*E_2(x) - E_2(x)^2 = 1 - (24^2)*(Sum_{n >= 1} sigma_1(n)*x^n )^2 is in the set R.
Hence, 2*E_2(x) - E_2(x)^2 == 1 (mod 24^2) == 1 (mod (2^6)*(3^2)).
It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_2(x) - E_2(x)^2 belongs to P((2^5)*3) = P(96). End Proof.
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
MAPLE
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(2) - E(2)^2)^(1/96), q = 0, n), n = 0..20);
CROSSREFS
Cf. A006352 (E_2), A281374 (E_2)^2, A289392 ((E_2)^(1/4)), A341801, A341871 - A341875, A377974, A377975, A377976, A377977.
Sequence in context: A351796 A069031 A061234 * A061584 A197191 A208655
KEYWORD
sign,easy
AUTHOR
Peter Bala, Nov 13 2024
STATUS
approved