The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A208655 Number of palindromic paths starting with 1 through the subset array of {1,2,...,n}; see Comments. 3
 1, 1, 6, 36, 2400, 90000, 55566000, 13553164800, 72267023646720, 117595223746560000, 5219033393851200000000, 57636380373471744768000000, 20810790197418148654769602560000, 1578992018570629416640340512656998400 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS A palindromic path through the subset array of {1,2,...,n} is essentially a palindrome using numbers i from {1,2,...n}, where the number of times i can be used in position k equals the multiplicity of i in the multiset of numbers in the k-element subsets of {1,2,...,n}. See A208650 for a discussion and guide to related sequences. LINKS Table of n, a(n) for n=1..14. EXAMPLE For n=4, write row 1: 1,2,3,4 row 2: 1,2; 1,3; 1,4; 2,3; 2,4; 3;4 row 3: 1,2,3; 1,2,4; 1,3,4; 2,3,4 row 4: 1,2,3,4 To form a palindromic path of length 4 and starting with 1, there is 1 way to choose 1st term from row 1, then 12 ways to choose 2nd term from row 2, then 3 ways to choose 3rd term, then 1 way to finish. Thus, a(4)=1*12*3*1=36. MATHEMATICA m[n_] := Floor[(n + 1)/2]; z = 21; g[n_] := Product[i*Binomial[n, i], {i, 1, m[n]}] h[n_] := Product[Binomial[n - 1, i], {i, m[n], n - 1}] Table[g[n], {n, 1, z}] (* A208652 *) Table[h[n], {n, 1, z}] (* A208653 *) Table[g[n] h[n], {n, 1, 2 z/3}] (* A208654 *) Table[g[n] h[n]/n, {n, 1, 2 z/3}] (* A208655 *) CROSSREFS Cf. A208650, A208654. Sequence in context: A061234 A061584 A197191 * A202781 A067213 A173604 Adjacent sequences: A208652 A208653 A208654 * A208656 A208657 A208658 KEYWORD nonn AUTHOR Clark Kimberling, Mar 02 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 20 22:14 EDT 2024. Contains 371848 sequences. (Running on oeis4.)