login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A377974
Expansion of the 1920th root of the series 2*E_4(x) - E_8(x), where E_4 and E_8 are the Eisenstein series of weight 4 and weight 8.
5
1, 0, -30, -540, -867660, -31107300, -33668157900, -1795572812400, -1477793386682970, -103845834995498100, -69550699526934273180, -6017200267937951322660, -3426636160378174348594500, -349303370036461528632524580, -174458882971934188146144343320, -20314204536496741742949242177040
OFFSET
0,3
COMMENTS
Let R = 1 + x*Z[[x]] denote the set of integer power series with constant term equal to 1. Let P(n) = {g^n, g in R}. The Eisenstein series E_4(x) lies in P(8) (Heninger et al.). Since E_8(x) = E_4(x)^2, it follows that E_8(x) lies in P(16).
We claim that the series 2*E_4(x) - E_8(x) belongs to P(1920).
Proof.
E_4(x) = 1 + 240*Sum_{n >= 1} sigma_3(n)*x^n. Hence,
2*E_4(x) - E_8(x) = 2*E_4(x) - E_4(x)^2 = 1 - 240^2*( Sum_{n >= 1} sigma_3(n) )^2 is in the set R.
Hence, 2*E_4(x) - E_8(x) == 1 mod(240^2) == 1 (mod (2^8)*(3^2)*(5^2)).
It follows from Heninger et al., Theorem 1, Corollary 2, that the series 2*E_4(x) - E_8(x) belongs to P((2^7)*3*5) = P(1920). End Proof.
LINKS
N. Heninger, E. M. Rains and N. J. A. Sloane, On the Integrality of n-th Roots of Generating Functions, arXiv:math/0509316 [math.NT], 2005-2006; J. Combinatorial Theory, Series A, 113 (2006), 1732-1745.
MAPLE
with(numtheory):
E := proc (k) local n, t1; t1 := 1 - 2*k*add(sigma[k-1](n)*q^n, n = 1..30)/bernoulli(k); series(t1, q, 30) end:
seq(coeftayl((2*E(4) - E(8))^(1/1920), q = 0, n), n = 0..20);
CROSSREFS
Cf. A004009 (E_4), A008410 (E_8), A108091 (eighth root of E_4), A341871 - A341875, A377973, A377975, A377976, A377977.
Sequence in context: A286975 A139626 A037961 * A143399 A293103 A075510
KEYWORD
sign,easy
AUTHOR
Peter Bala, Nov 13 2024
STATUS
approved