login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A000652 Invertible Boolean functions of n variables.
(Formerly M4315 N1807)
3
1, 1, 6, 924, 81738720000, 256963707943061374889193111552000, 30978254928194376001814792318154658399138184007229852126545533479881553257431040000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Equivalence classes of invertible maps from {0,1}^n to {0,1}^n, under action of (C_2)^n on both domain and range.

REFERENCES

M. A. Harrison, Introduction to Switching and Automata Theory. McGraw Hill, NY, 1965, p. 154, problem 12.

C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Table of n, a(n) for n=0..6.

M. A. Harrison, The number of classes of invertible Boolean functions, J. ACM 10 (1963), 25-28. [Annotated scan of page 27 only]

C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541.

C. S. Lorens, Invertible Boolean functions, IEEE Trans. Electron. Computers, EC-13 (1964), 529-541. [Annotated scan of page 530 only]

Index entries for sequences related to Boolean functions

FORMULA

A000652: n->2^(-2*n)*( (2^n)! + (2^n-1)^2 * ( (2^(n-1))! )*2^(2^(n-1)));

CROSSREFS

Cf. A001038 A000653 A000654 A000722 A001537 A046856 A046857

Sequence in context: A229629 A137801 A076667 * A214638 A175554 A263423

Adjacent sequences:  A000649 A000650 A000651 * A000653 A000654 A000655

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane.

EXTENSIONS

More terms from Vladeta Jovovic, Feb 23 2000

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 31 16:29 EDT 2020. Contains 334748 sequences. (Running on oeis4.)