login
A376310
Run-sums of the sequence of first differences of prime-powers.
9
3, 2, 2, 4, 3, 1, 2, 4, 8, 1, 5, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 8, 4, 2, 1, 3, 6, 2, 10, 2, 12, 4, 2, 4, 6, 2, 10, 2, 4, 2, 24, 4, 2, 4, 6, 4, 8, 5, 1, 12, 2, 6, 4, 2, 6, 4, 14, 4, 2, 4, 14, 12, 4, 2, 4, 6, 2, 18, 4, 6, 8, 4, 8, 10, 2
OFFSET
1,1
EXAMPLE
The sequence of prime-powers (A246655) is:
2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, ...
The sequence of first differences (A057820) of prime-powers is:
1, 1, 1, 2, 1, 1, 2, 2, 3, 1, 2, 4, 2, 2, 2, 2, 1, 5, 4, 2, 4, 2, 4, ...
with runs:
(1,1,1),(2),(1,1),(2,2),(3),(1),(2),(4),(2,2,2,2),(1),(5),(4),(2),(4), ...
with sums A376310 (this sequence).
MATHEMATICA
Total/@Split[Differences[Select[Range[100], PrimePowerQ]]]
CROSSREFS
For primes instead of prime-powers we have A373822, halved A373823.
For squarefree numbers instead of prime-powers we have A376307.
For compression instead of run-sums we have A376308.
For run-lengths instead of run-sums we have A376309.
For positions of first appearances we have A376341, sorted A376340.
A000040 lists the prime numbers, differences A001223.
A000961 and A246655 list prime-powers, first differences A057820.
A003242 counts compressed compositions, ranks A333489.
A005117 lists squarefree numbers, differences A076259.
A024619 and A361102 list non-prime-powers, first differences A375708.
A116861 counts partitions by compressed sum, by compressed length A116608.
A124767 counts runs in standard compositions, anti-runs A333381.
A238130, A238279, A333755 count compositions by number of runs.
A274174 counts contiguous compositions, ranks A374249.
A373948 encodes compression using compositions in standard order.
Sequence in context: A237612 A362465 A111739 * A372490 A182214 A339505
KEYWORD
nonn
AUTHOR
Gus Wiseman, Sep 22 2024
STATUS
approved