login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A376139
a(n) = (-1)^A051903(n).
1
1, -1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, 1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1, 1, 1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, -1, -1, -1, 1, -1, -1, -1
OFFSET
1
COMMENTS
The asymptotic density of the occurrences of 1's is Sum_{k>=2} (-1)^k * (1 - 1/zeta(k)) = 0.27591672059822700769..., which is the asymptotic density of A368714.
FORMULA
a(n) = 1 if and only if n is in A368714.
a(n) = -1 if n is a squarefree number (A005117) that is larger than 1.
Asymptotic mean: c = Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * (Sum_{k>=2} (-1)^k * (1 - 1/zeta(k))) - 1 = -0.44816655880354598461... . The asymptotic standard deviation of this sequence is sqrt(1-c^2) = 0.89395007442820192379... .
MATHEMATICA
a[n_] := (-1)^If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]; Array[a, 100]
PROG
(PARI) a(n) = (-1)^if(n == 1, 0, vecmax(factor(n)[, 2]));
(Python)
from sympy import factorint
def A376139(n): return -1 if max(factorint(n).values(), default=0)&1 else 1 # Chai Wah Wu, Sep 12 2024
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Amiram Eldar, Sep 11 2024
STATUS
approved