login
A374385
Irregular triangle read by rows: coefficients of polynomial P(n,x) (exponents in increasing order).
2
1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 0, 1, -1, 1, 0, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0
COMMENTS
Conjecture 1: Sum_{j=1..(-1)^A001221(n)*A023900(n)} root(P(n,x) = 0, j)^k = (-1)^A001221(n)*A023900(GCD(n, k)), which means there is a loop:
A191898 -> P(n,x) -> roots(P(n,x)) -> (-1)^A001221(n)*A191898(n,k) -> P(n,x).
Conjecture 2: P(n,1) = A020500(n), for n >= 1.
Conjecture 3: P(A005117(j),x) = Phi(A005117(j),x), j >= 2, where Phi(n,x) are the cyclotomic polynomials in A013595.
The roots of P(n,x) = 0 are found in A374412.
FORMULA
P(n,x) = denominator(Sum_{h=0..oo} Sum_{k=1..n} A023900(GCD(n,k))*x^(n*h + k)).
a(n,m) = [x^m] P(n,x), n >= 0, 0 <= m <= (-1)^A001221(n)*A023900(n).
EXAMPLE
P(0,x) = 1; P(1,x) = 1 - x; P(2,x) = 1 + x; P(3,x) = 1 + x + x^2; P(4,x) = 1 + x; P(5,x) = 1 + x + x^2 + x^3 + x^4; ...
The irregular triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
0: 1
1: 1 -1
2: 1 1
3: 1 1 1
4: 1 1
5: 1 1 1 1 1
6: 1 -1 1
7: 1 1 1 1 1 1 1
8: 1 1
9: 1 1 1
10: 1 -1 1 -1 1
11: 1 1 1 1 1 1 1 1 1 1 1
12: 1 -1 1
13: 1 1 1 1 1 1 1 1 1 1 1 1 1
14: 1 -1 1 -1 1 -1 1
15: 1 -1 0 1 -1 1 0 -1 1
16: 1 1
...
MATHEMATICA
nn = 17; f[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[CoefficientList[Table[Denominator[Sum[Sum[f[GCD[n, k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}]], {n, 0, nn}], x]]
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Mats Granvik, Jul 07 2024
STATUS
approved