login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A374385
Irregular triangle read by rows: coefficients of polynomial P(n,x) (exponents in increasing order).
2
1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1, 1, -1, 1, -1, 1, 1, -1, 0, 1, -1, 1, 0, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1
OFFSET
0
COMMENTS
Conjecture 1: Sum_{j=1..(-1)^A001221(n)*A023900(n)} root(P(n,x) = 0, j)^k = (-1)^A001221(n)*A023900(GCD(n, k)), which means there is a loop:
A191898 -> P(n,x) -> roots(P(n,x)) -> (-1)^A001221(n)*A191898(n,k) -> P(n,x).
Conjecture 2: P(n,1) = A020500(n), for n >= 1.
Conjecture 3: P(A005117(j),x) = Phi(A005117(j),x), j >= 2, where Phi(n,x) are the cyclotomic polynomials in A013595.
The roots of P(n,x) = 0 are found in A374412.
FORMULA
P(n,x) = denominator(Sum_{h=0..oo} Sum_{k=1..n} A023900(GCD(n,k))*x^(n*h + k)).
a(n,m) = [x^m] P(n,x), n >= 0, 0 <= m <= (-1)^A001221(n)*A023900(n).
EXAMPLE
P(0,x) = 1; P(1,x) = 1 - x; P(2,x) = 1 + x; P(3,x) = 1 + x + x^2; P(4,x) = 1 + x; P(5,x) = 1 + x + x^2 + x^3 + x^4; ...
The irregular triangle a(n,m) begins:
n\m 0 1 2 3 4 5 6 7 8 9 10 11 12 ...
0: 1
1: 1 -1
2: 1 1
3: 1 1 1
4: 1 1
5: 1 1 1 1 1
6: 1 -1 1
7: 1 1 1 1 1 1 1
8: 1 1
9: 1 1 1
10: 1 -1 1 -1 1
11: 1 1 1 1 1 1 1 1 1 1 1
12: 1 -1 1
13: 1 1 1 1 1 1 1 1 1 1 1 1 1
14: 1 -1 1 -1 1 -1 1
15: 1 -1 0 1 -1 1 0 -1 1
16: 1 1
...
MATHEMATICA
nn = 17; f[n_] := DivisorSum[n, MoebiusMu[#] # &]; Flatten[CoefficientList[Table[Denominator[Sum[Sum[f[GCD[n, k]]*x^(n*h + k), {k, 1, n}], {h, 0, Infinity}]], {n, 0, nn}], x]]
CROSSREFS
KEYWORD
tabl,sign
AUTHOR
Mats Granvik, Jul 07 2024
STATUS
approved