Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #12 Sep 12 2024 15:28:27
%S 1,-1,-1,1,-1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,1,-1,1,-1,1,-1,-1,-1,-1,1,
%T -1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,1,1,
%U -1,1,-1,-1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,-1,-1,1,-1,-1,-1
%N a(n) = (-1)^A051903(n).
%C The asymptotic density of the occurrences of 1's is Sum_{k>=2} (-1)^k * (1 - 1/zeta(k)) = 0.27591672059822700769..., which is the asymptotic density of A368714.
%H Amiram Eldar, <a href="/A376139/b376139.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Eu#epf">Index entries for sequences computed from exponents in factorization of n</a>.
%F a(n) = 1 if and only if n is in A368714.
%F a(n) = -1 if n is a squarefree number (A005117) that is larger than 1.
%F Asymptotic mean: c = Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 2 * (Sum_{k>=2} (-1)^k * (1 - 1/zeta(k))) - 1 = -0.44816655880354598461... . The asymptotic standard deviation of this sequence is sqrt(1-c^2) = 0.89395007442820192379... .
%t a[n_] := (-1)^If[n == 1, 0, Max[FactorInteger[n][[;; , 2]]]]; Array[a, 100]
%o (PARI) a(n) = (-1)^if(n == 1, 0, vecmax(factor(n)[,2]));
%o (Python)
%o from sympy import factorint
%o def A376139(n): return -1 if max(factorint(n).values(),default=0)&1 else 1 # _Chai Wah Wu_, Sep 12 2024
%Y Cf. A005117, A051903, A368714.
%K sign,easy
%O 1
%A _Amiram Eldar_, Sep 11 2024