login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A376137
a(0) = 1; a(n) = Sum_{k=0..n-1} (-1)^k * (k+1)^2 * a(k) * a(n-k-1).
2
1, 1, -3, -34, 495, 13631, -467404, -23984426, 1490938299, 123999435015, -12164649041259, -1497474725212924, 212746558833692052, 36393896155519042476, -7062273474686464802160, -1603475573855830444120802, 407344895625777134555939139, 118552169162473363108837155199, -38177398083353809033748641523305
OFFSET
0,3
FORMULA
G.f. A(x) satisfies: A(x) = 1 / (1 - x * A(-x) + 3 * x^2 * A'(-x) - x^3 * A''(-x)).
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[(-1)^k (k + 1)^2 a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 18}]
nmax = 18; A[_] = 0; Do[A[x_] = 1/(1 - x A[-x] + 3 x^2 A'[-x] - x^3 A''[-x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Sep 11 2024
STATUS
approved